Skip to main content

Doping of Metal-Organic Frameworks with Functional Guest Molecules and Nanoparticles

  • Chapter
  • First Online:
Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 293))

Abstract

Nanoparticle synthesis within metal-organic frameworks (MOFs) is performed by the adsorption of suitable precursor molecules for the metal component and subsequent decomposition to the composite materials nanoparticles@MOF. This chapter will review different approaches of loading MOFs with more complex organic molecules and metal-organic precursor molecules. The related reactions inside MOFs are discussed with a focus on stabilizing reactive intermediates in the corresponding cavities. The syntheses of metal and metal oxide nanoparticles inside MOFs are reviewed, and different synthetic routes compared. Emphasis is placed on the micro structural characterization of the materials nanoparticles@MOF with a particular focus on the location of embedded nanoparticles using TEM methods. Some first examples of applications of the doped MOFs in heterogeneous catalysis and hydrogen storage are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bdc:

1,4-Benzene-dicarboxylate

bpdc:

4,4′,-Biphenyldicarboxylate

BPTC:

1,1´-Biphenyl-2,2´,6,6´-tetracarboxylate

CNtBu:

Tertiary-butyl isonitrile

cod:

cis,cis-1,5-Cyclooctane

COF:

Covalent organic framework

cot:

cis,cis,cis-1,3,5-Cyclooctatriene

Cp:

Cyclopentadienyl-anion (C5H5)

cyclam:

1,4,8,11-Tetraaza-cyclotetradecane

dabco:

1,4-Diazabicyclo[2.2.2]octane

DMA:

N,N-Dimethylacetamide

dmf:

Dimethylformamide

EXAFS:

Extended X-ray absorption fine structure

FT-IR:

Fourier transform infrared spectroscopy

FWHM:

Full width at half maximum

HAADF:

High-angle annular dark field

HKUST:

Hong Kong University of Science and Technology

JUC:

Jilin University China

Me:

Methyl

MIL:

Matérial Institute Lavoisier

MOCVD:

Metal-organic vapor deposition

MOF:

Metal-organic framework

mtb:

methanetetra-benzoate

OiPr:

Iso-propoxide

pyz:

Pyrazine

SAED:

Selected area electron diffraction

STEM:

Scanning transmission electron microscopy

TATB:

triazine-1,3,5-tribenzoate

TEM:

Transmission electron microscopy

THF:

Tetrahydrofuran

wt%:

Weight percent

XANES:

X-ray absorption near edge structure

XAS:

X-ray absorption spectroscopy

XRD:

X-ray powder diffraction

ZIF:

Zeolite A imidazolate framework

References

  1. Hoskins BF, Robson R (1989) J Am Chem Soc 111:5962

    Article  CAS  Google Scholar 

  2. Hoskins BF, Robson R (1990) J Am Chem Soc 112:1546

    Article  CAS  Google Scholar 

  3. Abrahams BF, Hoskins BF, Michail DM, Robson R (1994) Nature 369:727

    Article  CAS  Google Scholar 

  4. Venkataraman D, Gardner GB, Lee S, Moore JS (1995) J Am Chem Soc 117:11600

    Article  CAS  Google Scholar 

  5. Gardner GB, Venkataraman D, Moore JS, Lee S (1995) Nature 374:792

    Article  CAS  Google Scholar 

  6. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402:276

    Article  CAS  Google Scholar 

  7. Subramanian S, Zaworotko MJ (1995) Angew Chem Int Ed 34:2127

    Article  CAS  Google Scholar 

  8. James SL (2003) Chem Soc Rev 32:276

    Article  CAS  Google Scholar 

  9. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705

    Article  CAS  Google Scholar 

  10. Chae HK, Siberio-Pérez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) Nature 427:523

    Article  CAS  Google Scholar 

  11. Côté AP, Benin AL, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Science 310:1166

    Article  Google Scholar 

  12. El-Kaderi HM, Hunt JR, Medosa-Cortés JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM (2007) Science 316:268

    Article  CAS  Google Scholar 

  13. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Proc Natl Acad Sci USA 103:10186

    Article  CAS  Google Scholar 

  14. Hayashi H, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM (2007) Nature 6:501

    Article  CAS  Google Scholar 

  15. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) Science 319:939

    Article  CAS  Google Scholar 

  16. Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 43:2334

    Article  CAS  Google Scholar 

  17. Kitagawa S, Uemura K (2005) Chem Soc Rev 34:109

    Article  CAS  Google Scholar 

  18. Tanaka D, Kitagawa S (2008) Chem Mater 20:922

    Article  CAS  Google Scholar 

  19. Uemura T, Kitaura R, Ohta Y, Nagaoka M, Kitagawa S (2006) Angew Chem Int Ed 44:4112

    Article  Google Scholar 

  20. Férey G, Mellot-Draznieks C, Serre C, Millange F (2005) Acc Chem Res 38:217

    Article  Google Scholar 

  21. Férey G (2008) Chem Soc Rev 37:191

    Article  Google Scholar 

  22. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) Science 309:2040

    Article  Google Scholar 

  23. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) Nature 404:982

    Article  CAS  Google Scholar 

  24. Vaidhyanathan R, Bradshaw D, Rebilly JN, Barrio JP, Gould JA, Berry NG, Rosseinsky MJ (2006) Angew Chem Int Ed 118:1

    Article  Google Scholar 

  25. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469

    Article  CAS  Google Scholar 

  26. Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D, Férey G (2002) J Am Chem Soc 124:13519

    Article  CAS  Google Scholar 

  27. Rowsell JL, Millward CAR, Park KS, Yaghi OM (2004) J Am Chem Soc 126:5666

    Article  CAS  Google Scholar 

  28. Millward AR, Yaghi OM (2005) J Am Chem Soc 127:17998

    Article  CAS  Google Scholar 

  29. Matsuda R, Kitaura R, Kitagawa S, Kubota Y, Belosludov RV, Kobayashi TC, Sakamoto H, Chiba T, Takata M, Kawazoe Y, Mita Y (2005) Nature 436:238

    Article  CAS  Google Scholar 

  30. Rowsell JLC, Yaghi OM (2005) Angew Chem Int Ed 44:4670

    Article  CAS  Google Scholar 

  31. Surblé S, Millange F, Serre C, Düren T, Latroche M, Bourrelly S, Llewellyn PL, Férey G (2006) J Am Chem Soc 128:14889

    Article  Google Scholar 

  32. Maji TK, Matsuda R, Kitagawa S (2007) Nat Mater 6:142

    Article  CAS  Google Scholar 

  33. Alaerts L, Kirschhock CEA, Maes M, van der Veen MA, Finsy V, Depla A, Martens JA, Baron GV, Jacobs PA, Denayer JFM, De Vos DE (2007) Angew Chem Int Ed 119:1

    Article  Google Scholar 

  34. Hermes S, Schröder F, Chelmowski R, Wöll C, Fischer RA (2005) J Am Chem Soc 127:13744

    Article  CAS  Google Scholar 

  35. Hermes S, Zacher D, Baunemann A, Wöll C, Fischer RA (2007) Chem Mater 19:2168

    Article  CAS  Google Scholar 

  36. Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann C, Evers F, Zacher D, Fischer RA, Wöll C (2007) J Am Chem Soc 129:15118

    Article  CAS  Google Scholar 

  37. Biemmi E, Scherb C, Bein T (2007) J Am Chem Soc 129:8054

    Article  CAS  Google Scholar 

  38. Zacher D, Baunemann A, Hermes S, Fischer RA (2007) J Mater Chem 17:2785

    Article  CAS  Google Scholar 

  39. Wu CD, Hu A, Zhang L, Lin W (2005) J Am Chem Soc 127:8940

    Article  CAS  Google Scholar 

  40. Cho SH, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TE (2006) Chem Commun 24:2563

    Article  Google Scholar 

  41. Bauer CA, Timofeeva TV, Settersten TB, Patterson BD, Liu VH, Simmons BA, Allendorf MD (2007) J Am Chem Soc 129:7136

    Article  CAS  Google Scholar 

  42. Chen B, Yang Y, Zapata F, Lin G, Qian G, Lobkovsky EB (2007) Adv Mater 19:1693

    Article  CAS  Google Scholar 

  43. Llabres i Xamena FX, Corma A, Garcia H (2007) J Phys Chem C 111:80

    Article  CAS  Google Scholar 

  44. Alvaro M, Carbonell E, Ferrer B, Llabres i Xamena FX, Garcia H (2007) Chem Eur J 13:5106

    Article  CAS  Google Scholar 

  45. Hulteen JC, Martin CR (1997) J Mater Chem 7:1075

    Article  CAS  Google Scholar 

  46. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169

    Article  CAS  Google Scholar 

  47. Gray DH, Hu S, Juang E, Gin DL (1997) Adv Mater 9:731

    Article  CAS  Google Scholar 

  48. Fang QR, Zhu GS, Jin Z, Ji YY, Ye JW, Xue M, Yang H, Wang Y, Qiu SL (2007) Angew Chem Int Ed 46:6638

    Article  CAS  Google Scholar 

  49. Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2006) Angew Chem Int Ed 118:6120

    Article  Google Scholar 

  50. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2008) J Am Chem Soc 130:6774

    Article  CAS  Google Scholar 

  51. Sabo M, Henschel A, Fröde H, Klemm E, Kaskel S (2007) J Mater Chem 17:3827

    Article  CAS  Google Scholar 

  52. Schmid G (1992) Chem Rev 92:1709

    Article  CAS  Google Scholar 

  53. Bradley JS (1994) The Chemistry of Transition Metal Colloids. In: Schmid G (ed) Clusters and Colloids: from Theory to Applications. VCH, Weinheim, pp 459–544

    Chapter  Google Scholar 

  54. Hitchman ML, Jensen KF (1993) Chemical Vapor Deposition. Academic Press, Principles and Applications. London

    Google Scholar 

  55. Sherman A (1987) Chemical vapor deposition for microelectronics. Principles, technology and applications. Noyes Publications, Park Ridge

    Google Scholar 

  56. Kaye SS, Dailly A, Yaghi OM, Long JR (2007) J Am Chem Soc 129:14176

    Article  CAS  Google Scholar 

  57. Huang L, Wang H, Chen J, Wang Z, Sun J, Zhao D, Yan Y (2003) Microporous Mesoporous Mater 58:105

    Article  CAS  Google Scholar 

  58. Greathouse JA, Allendorf MD (2006) J Am Chem Soc 128:10678

    Article  CAS  Google Scholar 

  59. Hermes S, Schröter MK, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer RW (2005) Angew Chem Int Ed 44:6237

    Article  CAS  Google Scholar 

  60. Kim H, Chun H, Kim GH, Leeb HS, Kim K (2005) Chem Commun:2759

    Google Scholar 

  61. Hermes S, Schröder F, Amirjalayer S, Schmid R, Fischer RA (2006) J Mater Chem 16:2464

    Article  CAS  Google Scholar 

  62. Proch S, Hermannsdörfer J, Kempe R, Kern C, Jess A, Seyfahrt L, Senker J (2008) Chem Eur J 14:8204

    Article  CAS  Google Scholar 

  63. Müller M, Lebedev OI, Fischer RA (2008) J Mater Chem 18:5274

    Article  Google Scholar 

  64. Schröder F, Esken D, Cokoja M, van den Berg MWE, Lebedev OI, Van Tendeloo G, Walaszek B, Buntkowsky G, Limbach HH, Chaudret B, Fischer RA (2008) J Am Chem Soc 130:6119

    Article  Google Scholar 

  65. Sauer J, Marlow F, Spliethoff B, Schüth F (2002) Chem Mater 14:217

    Article  CAS  Google Scholar 

  66. Hafizovic J, Bjorgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP (2007) J Am Chem Soc 129:3612

    Article  CAS  Google Scholar 

  67. Park YK, Choi SB, Kim H, Kim K, Won BH, Choi K, Choi JS, Ahn WS, Won N, Kim S, Jung DH, Choi SH, Kim GH, Cha SS, Jhon YH, Yang JK, Kim J (2007) Angew Chem Int Ed 46:8230

    Article  CAS  Google Scholar 

  68. Caulder DL, Brückner C, Powers RE, König S, Parac TN, Leary JA, Raymond KN (2001) J Am Chem Soc 123:8923

    Article  CAS  Google Scholar 

  69. Leary JA, Pluth MD, Raymond KN (2006) Chem Soc Rev 36:161

    Google Scholar 

  70. Fiedler D, Bergman RG, Raymond KN (2006) Angew Chem Int Ed 45:745

    Article  CAS  Google Scholar 

  71. Pluth MD, Bergman RG, Raymond KN (2007) Angew Chem Int Ed 46:8587

    Article  CAS  Google Scholar 

  72. Kawano M, Kobayashi Y, Ozeki T, Fujita M (2006) J Am Chem Soc 128:6558

    Article  CAS  Google Scholar 

  73. Kaye SS, Long JR (2008) J Am Chem Soc 130:806

    Article  CAS  Google Scholar 

  74. Turner S, Lebedev OI, Schröder F, Esken D, Fischer RA, Van Tendeloo G (2008) Chem Mater 20:5622

    Article  CAS  Google Scholar 

  75. Kampers FWH, Engelein CWR, van Hoff JHC, Koningsberger DC (1990) J Phys Chem 94:8574

    Article  CAS  Google Scholar 

  76. Opelt S, Türk S, Dietzsch E, Henschel A, Kaskel S, Klemm E (2008) Catal Commun 9:1286

    Article  CAS  Google Scholar 

  77. Pan C, Pelzer K, Philippot K, Chaudret B, Dassenoy F, Lecante P, Casanove MJ (2001) J Am Chem Soc 123:7584

    Article  CAS  Google Scholar 

  78. Pelzer K, Laleu B, Lefebvre F, Philippot K, Chaudret B, Candy JP, Basset JM (2004) Chem Mater 16:4937

    Article  CAS  Google Scholar 

  79. Pelzer K, Vidoni O, Philippot K, Chaudret B, Colliere V (2003) Adv Funct Mater 13:118

    Article  CAS  Google Scholar 

  80. Müller M, Hermes S, Kähler K, Muhler M, Fischer RA (2008) Chem Mater 20:4576

    Article  Google Scholar 

  81. Sung CK, Hong W, Shi Q, Kou X, Yeung MH, Wang J, Stucky GD (2006) Adv Funct Mater 16:2225

    Article  Google Scholar 

  82. Besson S, Gacoin T, Ricolleau Boilot JP (2003) Chem Commun 3:360

    Article  Google Scholar 

  83. Plyuto Y, Berquier JM, Jacquiod C, Ricolleau C (1999) Chem Commun 17:1653

    Article  Google Scholar 

  84. Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H (2002) Science 295:2053

    Article  CAS  Google Scholar 

  85. Günter MM, Ressler T, Bems B, Büscher C, Genger T, Hinrichsen O, Muhler M, Schlögl R (2001) Catal Lett 71:37

    Article  Google Scholar 

  86. Fujitani T, Nakamura J (2000) Appl Catal A 191:111

    Article  CAS  Google Scholar 

  87. Kurtz M, Bauer N, Buscher C, Wilmer H, Hinrichsen O, Becker R, Rabe S, Merz K, Driess M, Fischer RA, Muhler M (2004) Catal Lett 92:49

    Article  CAS  Google Scholar 

  88. Müller M, Zhang X, Wang Y, Fischer RA (2009) Chem Commun. doi:10.1039/b814241f

    Google Scholar 

  89. RiMoon H, Kim JH, Suh MP (2005) Angew Chem Int Ed 44:1261

    Article  Google Scholar 

  90. Suh MP, Moon HR, Lee EY, Jang SJ (2006) J Am Chem Soc 128:4710

    Article  CAS  Google Scholar 

  91. Cheon YE, Suh MP (2008) Chem Eur J 14:3961

    Article  CAS  Google Scholar 

  92. Hwang YK, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Férey G (2008) Angew Chem Int Ed 47:4144

    Article  CAS  Google Scholar 

  93. Henschel A, Gedrich K, Kraehnert R, Kaskel S (2008) Chem Commun:4192

    Google Scholar 

  94. Becker R, Parala H, Hipler F, Tkachenko OP, Klementiev KV, Grünert W, Wilmer H, Hinrichsen O, Muhler M, Birkner A, Wöll C, Schäfer S, Fischer RA (2004) Angew Chem Int Ed 43:2839

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland A. Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Schröder, F., Fischer, R.A. (2009). Doping of Metal-Organic Frameworks with Functional Guest Molecules and Nanoparticles. In: Schröder, M. (eds) Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis. Topics in Current Chemistry, vol 293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2009_4

Download citation

Publish with us

Policies and ethics