Skip to main content

Designing Metal-Organic Frameworks for Catalytic Applications

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 293))

Abstract

Metal-organic frameworks (MOFs) are constructed by linking organic bridging ligands with metal-connecting points to form infinite network structures. Fine tuning the porosities of and functionalities within MOFs through judicious choices of bridging ligands and metal centers has allowed their use as efficient heterogeneous catalysts. This chapter reviews recent developments in designing porous MOFs for a variety of catalytic reactions. Following a brief introduction to MOFs and a comparison between porous MOFs and zeolites, we categorize catalytically active achiral MOFs based on the types of catalytic sites and organic transformations. The unsaturated metal-connecting points in MOFs can act as catalytic sites, so can the functional groups that are built into the framework of a porous MOF. Noble metal nanoparticles can also be entrapped inside porous MOFs for catalytic reactions. Furthermore, the channels of porous MOFs have been used as reaction hosts for photochemical and polymerization reactions. We also summarize the latest results of heterogeneous asymmetric catalysis using homochiral MOFs. Three distinct strategies have been utilized to develop homochiral MOFs for catalyzing enantioselective reactions, namely the synthesis of homochiral MOFs from achiral building blocks by seeding or by statistically manipulating the crystal growth, directing achiral ligands to form homochiral MOFs in chiral environments, and incorporating chiral linker ligands with functionalized groups. The applications of homochiral MOFs in several heterogeneous asymmetric catalytic reactions are also discussed. The ability to synthesize value-added chiral molecules using homochiral MOF catalysts differentiates them from traditional zeolite catalysis, and we believe that in the future many more homochiral MOFs will be designed for catalyzing numerous asymmetric organic transformations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BDC:

1,4-Benzenedicarboxylate acid

BET:

Brunauer-Emmett-Teller

BINOL:

1,1′-binaphthalene-2,2′-diol

BPDC:

Biphenyl-4,4′-dicarboxylic acid

BTC:

Benzene-1,3,5-tricarboxylate

MOFs:

Metal-organic frameworks

SBU:

Secondary building unit

TOF:

Turn over frequency

References

  1. Batten SR, Robson R (1998) Angew Chem Int Ed 37:1460

    Article  Google Scholar 

  2. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629

    Article  CAS  Google Scholar 

  3. Evans OR, Lin W (2002) Acc Chem Res 35:511

    Article  CAS  Google Scholar 

  4. Ferey G, Mellot-Draznieks C, Serre C, Millange F (2005) Acc Chem Res 38:217

    Article  CAS  Google Scholar 

  5. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705

    Article  CAS  Google Scholar 

  6. Hill RJ, Long DL, Champness NR, Hubberstey P, Schroder M (2005) Acc Chem Res 38:335

    Article  CAS  Google Scholar 

  7. Bradshaw D, Warren JE, Rosseinsky MJ (2007) Science 315:977

    Article  CAS  Google Scholar 

  8. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127

    Article  CAS  Google Scholar 

  9. Kesanli B, Cui Y, Smith MR, Bittner EW, Bockrath BC, Lin W (2005) Angew Chem Int Ed 44:72

    Article  CAS  Google Scholar 

  10. Chen B, Zhao X, Putkham A, Hong K, Lobkovsky EB, Hurtado EJ, Fletcher AJ, Thomas KM (2008) J Am Chem Soc 130:6411

    Article  CAS  Google Scholar 

  11. Pan L, Parker B, Huang X, Olson DH, Lee JY, Li J (2006) J Am Chem Soc 128:4180

    Article  CAS  Google Scholar 

  12. Evans OR, Ngo HL, Lin WB (2001) J Am Chem Soc 123:10395

    Article  CAS  Google Scholar 

  13. Han JW, Hill CL (2007) J Am Chem Soc 129:15094

    Article  CAS  Google Scholar 

  14. Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S (2007) J Am Chem Soc 129:2607

    Article  CAS  Google Scholar 

  15. Wu CD, Hu A, Zhang L, Lin WB (2005) J Am Chem Soc 127:8940

    Article  CAS  Google Scholar 

  16. Hwang YK, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Ferey G (2008) Angew Chem Int Ed 47:4144

    Article  CAS  Google Scholar 

  17. Schroeder F, Esken D, Cokoja M, van den Berg MWE, Lebedev OI, van Tendeloo G, Walaszek B, Buntkowsky G, Limbach HH, Chaudret B, Fischer RA (2008) J Am Chem Soc 130:6119

    Article  CAS  Google Scholar 

  18. Fujita M, Kwon YJ, Washizu S, Ogura K (1994) J Am Chem Soc 116:1151

    Article  CAS  Google Scholar 

  19. Ohmori O, Fujita M (2004) Chem Commun 14:1586

    Google Scholar 

  20. Schlichte K, Kratzke T, Kaskel S (2004) Microporous Mesoporous Mat 73:81

    Article  CAS  Google Scholar 

  21. Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) Science 283:1148

    Article  CAS  Google Scholar 

  22. Horike S, Dinca M, Tamaki K, Long JR (2008) J Am Chem Soc 130:5854

    Article  CAS  Google Scholar 

  23. Alaerts L, Seguin E, Poelman H, Thibault-Starzyk F, Jacobs PA, De Vos DE (2006) Chem Eur J 12:7353

    Article  CAS  Google Scholar 

  24. Striegler S (2006) Tetrahedron 62:9109

    Article  CAS  Google Scholar 

  25. Kato CN, Hasegawa M, Sato T, Yoshizawa A, Inoue T, Mori W (2005) J Catal 230:226

    Article  CAS  Google Scholar 

  26. Dybtsev DN, Nuzhdin AL, Chun H, Bryliakov KP, Talsi EP, Fedin VP, Kim K (2006) Angew Chem Int Ed 45:916

    Article  CAS  Google Scholar 

  27. Gomez-Lor B, Gutierrez-Puebla E, Iglesias M, Monge MA, Ruiz-Valero C, Snejko N (2002) Inorg Chem 41:2429

    Article  CAS  Google Scholar 

  28. Perles J, Iglesias M, Martin-Luengo MA, Monge MA, Ruiz-Valero C, Snejko N (2005) Chem Mat 17:5837

    Article  CAS  Google Scholar 

  29. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) Science 309:2040

    Article  CAS  Google Scholar 

  30. Pan L, Liu HM, Lei XG, Huang XY, Olson DH, Turro NJ, Li J (2003) Angew Chem Int Ed 42:542

    Article  CAS  Google Scholar 

  31. Turro NJ (2000) Acc Chem Res 33:637

    Article  CAS  Google Scholar 

  32. Uemura T, Kitaura R, Ohta Y, Nagaoka M, Kitagawa S (2006) Angew Chem Int Ed 45:4112

    Article  CAS  Google Scholar 

  33. Uemura T, Ono Y, Kitagawa K, Kitagawa S (2008) Macromolecules 41:87

    Article  CAS  Google Scholar 

  34. Uemura T, Kitagawa K, Horike S, Kawamura T, Kitagawa S, Mizuno M, Endo K (2005) Chem Commun 48:5968

    Article  Google Scholar 

  35. Uemura T, Hiramatsu D, Kubota Y, Takata M, Kitagawa S (2007) Angew Chem Int Ed 46:4987

    Article  CAS  Google Scholar 

  36. Ezuhara T, Endo K, Aoyama Y (1999) J Am Chem Soc 121:3279

    Article  CAS  Google Scholar 

  37. Wu ST, Wu YR, Kang QQ, Zhang H, Long LS, Zheng ZP, Huang RB, Zheng LS (2007) Angew Chem Int Ed 46:8475

    Article  CAS  Google Scholar 

  38. Kepert CJ, Prior TJ, Rosseinsky MJ (2000) J Am Chem Soc 122:5158

    Article  CAS  Google Scholar 

  39. Bradshaw D, Prior TJ, Cussen EJ, Claridge JB, Rosseinsky MJ (2004) J Am Chem Soc 126:6106

    Article  CAS  Google Scholar 

  40. Lin Z, Slawin AMZ, Morris RE (2007) J Am Chem Soc 129:4880

    Article  CAS  Google Scholar 

  41. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) Nature 404:982

    Article  CAS  Google Scholar 

  42. Ngo HL, Lin WB (2002) J Am Chem Soc 124:14298

    Article  CAS  Google Scholar 

  43. Wu CD, Lin WB (2005) Angew Chem Int Ed 44:1958

    Article  CAS  Google Scholar 

  44. Wu C, Lin W (2007) Angew Chem Int Ed 46:1075

    Article  CAS  Google Scholar 

  45. Tanaka K, Oda S, Shiro M (2008) Chem Commun 820

    Google Scholar 

  46. Cho SH, Ma BQ, Nguyen ST, Hupp JT, Albrecht-Schmitt TE (2006) Chem Commun 2563

    Google Scholar 

  47. Berthod M, Mignani G, Woodward G, Lemaire M (2005) Chem Rev 105:1801

    Article  CAS  Google Scholar 

  48. Miyashita A, Yasuda A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R (1980) J Am Chem Soc 102:7932

    Article  CAS  Google Scholar 

  49. Hu AG, Ngo HL, Lin WB (2003) J Am Chem Soc 125:11490

    Article  CAS  Google Scholar 

  50. Hu AG, Ngo HL, Lin WB (2004) Angew Chem Int Ed 43:2501

    Article  CAS  Google Scholar 

  51. Cejka J, Wichterlova B (2002) Catal Rev Sci Eng 44:375

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge National Science Foundation for financial support. We also thank former coworkers Drs. Aiguo Hu, Chuan-De Wu, and Helen L. Ngo for their invaluable contributions to the research program in the Lin group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Ma, L., Lin, W. (2009). Designing Metal-Organic Frameworks for Catalytic Applications. In: Schröder, M. (eds) Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis. Topics in Current Chemistry, vol 293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2009_20

Download citation

Publish with us

Policies and ethics