Skip to main content

Palladium-Catalyzed Aryl–Aryl Bond Formation Through Double C–H Activation

  • Chapter
  • First Online:
C-H Activation

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 292))

Abstract

Aryl–aryl bond formation constitutes one of the most important subjects in organic synthesis. The recently developed direct arylation reactions for the formation of aryl–aryl bond have emerged as very attractive alternatives to traditional cross-coupling reactions. Particularly, the direct arylation through double C–H activation using the simple arenes as both coupling partners is a highly economic and attractive method. In this chapter, the recent progress of Pd-catalyzed aryl–aryl oxidative coupling reactions through double C–H activation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

acac:

Acetylacetonyl

atm:

Atmosphere

Bn:

Benzyl

BQ:

Benzoquinone

Bz:

Benzoyl

Piv:

Pivalyl

Tf:

Trifluoromethanesulfonyl

TFA:

Trifluoroacetic acid

TON:

Turnover number

Ts:

p-Toluenesulfonyl

References

  1. Horton DA, Bourne GT, Smythe ML (2003) Chem Rev 103:893–930

    Article  CAS  Google Scholar 

  2. Bringmann G, Mortimer AJP, Keller PA, Gresser MJ, Garner J, Breuning M (2005) Angew Chem 117:5518–5563; Angew Chem Int Ed (2005) 44:5384–5427

    Google Scholar 

  3. Schmidt U, Meyer R, Leitenberger V, Griesser H, Lieberknecht A (1992) Synthesis 1025–1030

    Google Scholar 

  4. Schmidt U, Leitenberger V, Griesser H, Schmidt J, Meyer R (1992) Synthesis 1248–1254

    Google Scholar 

  5. Matheron ME, Porchas M (2004) Plant Dis 88:665–668

    Article  CAS  Google Scholar 

  6. Poetsch E (1988) Kontakte 2:15–28

    Google Scholar 

  7. Alberico D, Scott ME, Lautens M (2007) Chem Rev 107:174–238

    Article  CAS  Google Scholar 

  8. Ullmann F, Bielecki J (1901) Chem Ber 34:2174–2185

    Article  CAS  Google Scholar 

  9. Hassan J, Svignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359–1469

    Article  CAS  Google Scholar 

  10. Kovacic P, Jones MB (1987) Chem Rev 87:357–379

    Article  CAS  Google Scholar 

  11. Gomberg M, Bachmann WE (1924) J Am Chem Soc 46:2339–2343

    Article  CAS  Google Scholar 

  12. Diederich F, Stang PJ (eds) (2004) Metal-catalyzed cross-coupling reactions. Wiley-VCH, New York

    Google Scholar 

  13. Goossen LJ, Deng G, Levy LM (2006) Science 313:662–664

    Article  CAS  Google Scholar 

  14. Goossen LJ, Rodríguez N, Melzer B, Linder C, Deng G, Levy LM (2007) J Am Chem Soc 129:4824–4833

    Article  CAS  Google Scholar 

  15. Miyaura N, Yamada K, Suzuki A (1979) Tetrahedron Lett 20:3737–3740

    Article  Google Scholar 

  16. Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  17. Tamao K, Kiso Y, Sumitani K, Kumada M (1972) J Am Chem Soc 94:9268–9269

    Article  CAS  Google Scholar 

  18. Milstein D, Stille JK (1978) J Am Chem Soc 100:3636–3638

    Article  CAS  Google Scholar 

  19. Espinet P, Echavarren AM (2004) Angew Chem 116:4808–4839; Angew Chem Int Ed (2004) 43:4704–4734

    Google Scholar 

  20. Baba S, Negishi E (1976) J Am Chem Soc 98:6729–6731

    Article  CAS  Google Scholar 

  21. Erdik E (1992) Tetrahedron 48:9577–9648

    Article  CAS  Google Scholar 

  22. Cope AC, Siekman RW (1965) J Am Chem Soc 87:3272–3273

    Article  CAS  Google Scholar 

  23. Dyker G (1999) Angew Chem 111:1808–1882; Angew Chem Int Ed (1999) 38:1698–1712

    Google Scholar 

  24. Godula K, Sames D (2006) Science 312:67–72

    Article  CAS  Google Scholar 

  25. Campeau L-C, Fagnou K (2006) Chem Commun 1253–1264

    Google Scholar 

  26. Yu J-Q, Giri R, Chen R (2006) Org Biomol Chem 4:4041–4047

    Article  CAS  Google Scholar 

  27. Dick AR, Sanford MS (2006) Tetrahedron 62:2439–2463

    Article  CAS  Google Scholar 

  28. Daugulis O, Zaitsev VG, Shabashov D, Pham Q-N, Lazareva A (2006) Synlett 3382–3388

    Google Scholar 

  29. Seregin IV, Gevorgyan V (2007) Chem Soc Rev 36:1173–1193

    Article  CAS  Google Scholar 

  30. Campeau L-C, Stuart DR, Fagnou K (2007) Aldrichmica Acta 40:35–41

    CAS  Google Scholar 

  31. Ellman JA (2007) Science 316:1131–1132

    Article  CAS  Google Scholar 

  32. Li B-J, Yang S-D, Shi Z-J (2008) Synlett 949–957

    Google Scholar 

  33. Li C-J (2009) Acc Chem Res 42:335–344

    Article  CAS  Google Scholar 

  34. Daugulis O, Do H-Q, Shabashov D (2009) Acc Chem Res. doi:10.1021/ar9000058

    Google Scholar 

  35. Do H-Q, Khan RMK, Daugulis O (2008) J Am Chem Soc 130:15185–15192

    Article  CAS  Google Scholar 

  36. Phipps RJ, Grimster NP, Gaunt MJ (2008) J Am Chem Soc 130:8172–8174

    Article  CAS  Google Scholar 

  37. Phipps RJ, Gaunt MJ (2009) Science 323:1593–1597

    Article  CAS  Google Scholar 

  38. Zhao D, Wang W, Yang F, Lan J, Yang L, Gao G, You J (2009) Angew Chem 121:3346–3350; Angew Chem Int Ed (2009) 48:3296–3300

    Google Scholar 

  39. Norinder J, Matsumoto A, Yoshikai N, Nakamura E (2008) J Am Chem Soc 130:5858–5859

    Article  CAS  Google Scholar 

  40. Yoshikai N, Matsumoto A, Norinder J, Nakamura E (2009) Angew Chem 121:2969–2972; Angew Chem Int Ed (2009) 48:2925–2928

    Google Scholar 

  41. van Helden R, Verberg G (1965) Recl Trav Chim Pays Bas 84:1263–1273

    Article  Google Scholar 

  42. Davidson JM, Triggs C (1966) Chem Ind (London) 457

    Google Scholar 

  43. Fujiwara Y, Moritani I, Ikegami K, Tanaka R, Teranishi S (1970) Bull Chem Soc Jpn 43:863–867

    Article  CAS  Google Scholar 

  44. Iataaki H, Yoshimoto H (1973) J Org Chem 38:76–79

    Article  Google Scholar 

  45. Mennenga GU, Rudenkov AI, Matveev KI, Kozhevnikov IV (1976) React Kinet Catal Lett 5:401–406

    Article  CAS  Google Scholar 

  46. Okamoto M, Yamaji T (2001) Chem Lett 212–213

    Google Scholar 

  47. Mukhopadhyay S, Rothenberg G, Lando G, Agbaria K, Kazanci M, Sasson Y (2001) Adv Synth Catal 343:455–459

    Article  CAS  Google Scholar 

  48. Burton HA, Kozhevnikov IV (2002) J Mol Catal A 185:285–290

    Article  CAS  Google Scholar 

  49. Yokota T, Sakaguchi S, Ishii Y (2002) Adv Synth Catal 344:849–854

    Article  CAS  Google Scholar 

  50. Kozhevnikov IV (1976) React Kinet Catal Lett 5:415–419

    Article  CAS  Google Scholar 

  51. Kozhevnikov IV (1976) React Kinet Catal Lett 4:451–458

    Article  CAS  Google Scholar 

  52. Kozhevnikov IV (1977) React Kinet Catal Lett 6:401–408

    Article  CAS  Google Scholar 

  53. Itahara T (1980) J Chem Soc Chem Commun 49–50

    Google Scholar 

  54. Masui K, Ikegami H, Mori A (2004) J Am Chem Soc 126:5074–5075

    Article  CAS  Google Scholar 

  55. Kobayashi K, Sugie A, Takahashi M, Masui K, Mori A (2005) Org Lett 7:5083–5085

    Article  CAS  Google Scholar 

  56. Takahashi M, Masui K, Sekiguchi H, Kobayashi N, Mori A, Funahashi M, Tamaoki N (2006) J Am Chem Soc 128:10930–10933

    Article  CAS  Google Scholar 

  57. Xia J-B, Wang X-Q, You S-L (2009) J Org Chem 74:456–458

    Article  CAS  Google Scholar 

  58. Hull KL, Lanni EL, Sanford MS (2006) J Am Chem Soc 128:14047–14049

    Article  CAS  Google Scholar 

  59. Itahara T (1981) J Chem Soc Chem Commun 254–255

    Google Scholar 

  60. Nakamura N, Tajima Y, Sakai K (1982) Heterocycles 17:235–245

    Article  CAS  Google Scholar 

  61. Li R, Jiang L, Lu W (2006) Organometallics 25:5973–5975

    Article  CAS  Google Scholar 

  62. Rong Y, Li R, Lu W (2007) Organometallics 26:4376–4378

    Article  CAS  Google Scholar 

  63. Stuart DR, Fagnou K (2007) Science 316:1172–1175

    Article  CAS  Google Scholar 

  64. Stuart DR, Villemure E, Fagnou K (2007) J Am Chem Soc 129:12072–12073

    Article  CAS  Google Scholar 

  65. Dwight TA, Rue NR, Charyk D, Josselyn R, DeBoef B (2007) Org Lett 9:3137–3139

    Article  CAS  Google Scholar 

  66. Potavathri S, Dumas AS, Dwight TA, Naumiec GR, Hammann JM, DeBoef B (2008) Tetrahedron Lett 49:4050–4053

    Article  CAS  Google Scholar 

  67. Hull KL, Sanford MS (2007) J Am Chem Soc 129:11904–11905

    Article  CAS  Google Scholar 

  68. Xia J-B, You S-L (2007) Organometallics 26:4869–4871

    Article  CAS  Google Scholar 

  69. Li B-J, Tian S-L, Fang Z, Shi Z-J (2008) Angew Chem 120:1131–1134; Angew Chem Int Ed (2008) 47:1115–1118

    Google Scholar 

  70. Brarsche G, García-Fortanet J, Buchwald SL (2008) Org Lett 10:2207–2210

    Article  Google Scholar 

  71. Cho SH, Hwang SJ, Chang S (2008) J Am Chem Soc 130:9254–9256

    Article  CAS  Google Scholar 

  72. Yoshimoto H, Itatani H (1973) Bull Chem Soc Jpn 46:2490–2492

    Article  CAS  Google Scholar 

  73. Shiotani A, Itatani H (1974) Angew Chem 86:478–479; Angew Chem Int Ed (1974) 13:471–472

    Google Scholar 

  74. Åkermark B, Eberson L, Jonsson E, Pettersson E (1975) J Org Chem 40:1365–1367

    Article  Google Scholar 

  75. Knölker H-J, Reddy KR (2002) Chem Rev 102:4303–4427

    Article  Google Scholar 

  76. Knölker HJ (2005) Top Curr Chem 244:115–148

    Google Scholar 

  77. Miller RB, Moock T (1980) Tetrahedron Lett 21:3319–3322

    Article  CAS  Google Scholar 

  78. Furukawa H, Ito C, Yogo M, Wu T-S (1986) Chem Pharm Bull 34:2672–2675

    Article  CAS  Google Scholar 

  79. Hall RJ, Marchant J, Oliveira-Campos AMF, Queiroz M-JRP, Shannon PVR (1992) J Chem Soc Perkin Trans 1:3439–3450

    Google Scholar 

  80. Ferreira ICFR, Queiroz M-JRP, Kirsch G (2002) Tetrahedron 58:7943–7949

    Article  CAS  Google Scholar 

  81. Knölker HJ, Knöll J (2003) Chem Commun 1170–1173

    Google Scholar 

  82. Knöll J, Knölker HJ (2006) Synlett 651–653

    Google Scholar 

  83. Benavides A, Peralta J, Delgado F, Tamariz J (2004) Synthesis 2499–2504

    Google Scholar 

  84. Sridharan V, Martín MA, Menéndez JC (2006) Synlett 2375–2378

    Google Scholar 

  85. Bernal P, Benavides A, Bautista R, Tamariz J (2007) Synthesis 1943–1948

    Google Scholar 

  86. Hagelin H, Oslob JD, Åkermark B (1999) Chem Eur J 5:2413–2416

    Article  CAS  Google Scholar 

  87. Knölker H-J, O’Sullivan N (1994) Tetrahedron 50:10893–10908

    Article  Google Scholar 

  88. Åkermark B, Oslob JD, Heuschert U (1995) Tetrahedron Lett 36:1325–1326

    Article  Google Scholar 

  89. Knölker H-J, Fröhner W (1998) J Chem Soc Perkin Trans 1 173–175

    Google Scholar 

  90. Knölker H-J, Reddy KR, Wagner A (1998) Tetrahedron Lett 39:8267–8270

    Article  Google Scholar 

  91. Knölker H-J, Fröhner W, Reddy KR (2002) Synthesis 557–564

    Google Scholar 

  92. Wang J, Rosingana M, Watson DJ, Dowdy ED, Discordia RP, Soundarajan N, Li W-S (2001) Tetrahedron Lett 42:8935–8937

    Article  CAS  Google Scholar 

  93. Merlic CA, You Y, McInnes DM, Zechman AL, Miller MM, Deng Q (2001) Tetrahedron 57:5199–5212

    Article  CAS  Google Scholar 

  94. Wada Y, Nagasaki H, Tokuda M, Orito K (2007) J Org Chem 72:2008–2014

    Article  CAS  Google Scholar 

  95. Watanabe T, Ueda S, Inuki S, Oishi S, Fujii N, Ohno H (2007) Chem Commun 4516–4518

    Google Scholar 

  96. Itahara T (1979) Synthesis 151–152

    Google Scholar 

  97. Itahara T, Sakakibara T (1978) Synthesis 607–608

    Google Scholar 

  98. Itahara T (1985) J Org Chem 50:5227–5275

    Google Scholar 

  99. Itahara T (1986) Heterocycles 24:2557–2562

    Article  CAS  Google Scholar 

  100. Boger DL, Patel M (1987) Tetrahedron Lett 28:2499–2502

    Article  CAS  Google Scholar 

  101. Liégault B, Lee D, Huestis MP, Stuart DR, Fagnou K (2008) J Org Chem 73:5022–5028

    Article  Google Scholar 

  102. Liégault B, Fagnou K (2008) Organometalllics 27:4841–4843

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by Chinese Academy of Sciences, National Natural Science Foundation of China (20872159, 20821002), and National Basic Research Program of China (973 Program 2009CB825300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Li You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

You, SL., Xia, JB. (2009). Palladium-Catalyzed Aryl–Aryl Bond Formation Through Double C–H Activation. In: Yu, JQ., Shi, Z. (eds) C-H Activation. Topics in Current Chemistry, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2009_18

Download citation

Publish with us

Policies and ethics