Skip to main content

Two-Dimensional Nanotemplates as Surface Cues for the Controlled Assembly of Organic Molecules

  • Chapter
  • First Online:
STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 285))

Abstract

Controlled two-dimensional assembly of organic molecules can be successfully realized by meansof surface nanotemplates that provide surface cues for assembly upon adsorption. Examples of suchtemplates are nanostructured surfaces and organic porous networks. In this review, we discuss theformation and use of such templates for controlled molecular assembly. The formation of the organicporous network is typically based on non-covalent interactions, e.g., hydrogen bonds, dipole–dipoleinteractions, metal-organic coordination bonds together with substrate-mediated molecular interactions.The pores of the network can act as hosts for specific organic molecules. The chemical structureof the molecular building blocks of the porous network has a primary effect on the shape, size,and chemical reactivity of the cavities. Long-range mesoscale reconstructions can also be employedas surface nanotemplates based on the selective adsorption of atomic or molecular species at specificsurface sites. Scanning tunneling microscopy is the key tool to study the formation of the nanotemplatesas well as the effect of the template in the growth of the ordered organic structures. The reportedstudies contribute to build the rationale in the design and fabrication of two-dimensional organicnetworks. The topic covered in this review represents an important challenge in nanotechnology sincethese findings might have a wide range of applications, e.g., in electronics, sensing, and bio-recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth JV, Costantini G, Kern K (2005) Nature 437:29

    Google Scholar 

  2. Rosei F (2004) J Phys Condens Matter 16:S1373

    CAS  Google Scholar 

  3. Whitesides GM, Mathias JP, Seto CT (1991) Science 254:1312

    CAS  Google Scholar 

  4. Pohl K, Bartelt MC, De La Figuera J, Bartelt NC, Hrbek J, Hwang RQ (1999) Nature 397:238

    CAS  Google Scholar 

  5. Weaver JH, Antonov VN (2004) Surf Sci 557:1

    CAS  Google Scholar 

  6. Whitesides GM, Grybowski B (2002) Science 295:2418

    CAS  Google Scholar 

  7. Lehn JM; Desiraju GR (1995) Angew Chem Int Ed 34:2311

    Google Scholar 

  8. Williams JH (1993) Acc Chem Res 26:593

    CAS  Google Scholar 

  9. Desiraju GR (1989) Crystal Engineering: The Design of Organic Solids. Elsevier, Amsterdam

    Google Scholar 

  10. Nath KG, Ivasenko O, McLeod JM, Miwa JA, Wuest JD, Nanci A, Perepichka DF, Rosei F (2007) J Phys Chem C 111:16996

    CAS  Google Scholar 

  11. Eichhorst-Gerner K, Stabel A, Moessner G, Declerq D, Valiyaveettil S, Enkelmann V, Müllen K, Rabe JP (1996) Angew Chem Int Ed 35:1492

    CAS  Google Scholar 

  12. Mena-Osteritz E, Bäuerle P (2001) Adv Mater 13:243

    CAS  Google Scholar 

  13. Grave C, Lentz D, Schäfer A, Samorí P, Rabe JP, Franke P, Schlüter AD (2005) J Am Chem Soc 125:6907

    Google Scholar 

  14. Stabel A, Heinz R, Rabe JP, Wegner G, De Schryver FC, Corens D, Dehaen W, Süling C (1995) J Phys Chem 99:8690

    CAS  Google Scholar 

  15. Brune H, Giovannini M, Bromann K, Kern K (1998) Nature 397:238

    Google Scholar 

  16. Cicoira F, Rosei F (2006) Surf Sci 600:1

    CAS  Google Scholar 

  17. Sgarlata A, Szkutnik PD, Balzarotti A, Motta N, Rosei F (2003) Appl Phys Lett 83:4002

    CAS  Google Scholar 

  18. Men FK, Liu F, Wang PJ, Chen CH, Cheng DL, Lin JL, Himpsel FJ (2002) Phys Rev Lett 88:096105

    CAS  Google Scholar 

  19. Gambardella P, Rusponi S, Veronese M, Dhesi SS, Cabria I, Zeller R, Dederichs PH, Dallmeyer A, Grazioli C, Kern K, Carbone C, Brune H (2003) Science 300:1130

    CAS  Google Scholar 

  20. Gambardella P, Dallmeyer A, Maiti K, Malagoli MC, Eberhardt W, Kern K, Carbone C (2002) Nature 416:301

    CAS  Google Scholar 

  21. Barth JV (2000) Surf Sci Rep 40:75

    CAS  Google Scholar 

  22. Barth JV (2007) Annu Rev Phys Chem 58:375

    CAS  Google Scholar 

  23. Rosei F, Schunack M, Naitoh Y, Jiang P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C, Besenbacher F (2003) Prog Surf Sci 71:95

    CAS  Google Scholar 

  24. Otero F, Rosei F, Besenbacher F (2006) Annu Rev Phys Chem 57:497

    CAS  Google Scholar 

  25. De Feyter S, De Schryver F (2005) Top Curr Chem 258:205

    Google Scholar 

  26. De Feyter S, De Schryver F (2005) J Phys Chem B 109:4290

    Google Scholar 

  27. De Feyter S, De Schryver F (2003) Chem Soc Rev 32:139

    Google Scholar 

  28. Ernst KH (2006) Top Curr Chem 265:209

    CAS  Google Scholar 

  29. Elemans JAAW, van Hameren R, Nole RMJ, Rowan A (2006) Adv Mater 18:1251

    CAS  Google Scholar 

  30. Bohringer M, Schneider WD (2000) Surf Rev Lett 7:661

    CAS  Google Scholar 

  31. Schunack M, Linderoth TR, Rosei F, Laegsgaard E, Stensgaard I, Besenbacher F (2002) Phys Rev Lett 88:156102

    CAS  Google Scholar 

  32. Lopinski GP, Wayner DDM, Wolkow RA (2000) Nature 406:48

    CAS  Google Scholar 

  33. Miwa JA, Eves BJ, Rosei F, Lopinski GP (2005) J Phys Chem B 109:20055

    CAS  Google Scholar 

  34. Ruben M, Lehn JM, Müller P (2006) Chem Soc Rev 35:1056

    CAS  Google Scholar 

  35. Hipps KW, Scudiero L, Barlow DE, Cooke JR MP (2002) J Am Chem Soc 124:2126

    CAS  Google Scholar 

  36. Scudiero L, Hipps KW, Barlow DE (2003) J Phys Chem B 107:2903

    CAS  Google Scholar 

  37. Pokrifchak M, Turner T, Pilgrom I, Johnston M, Hipps KW (2007) J Phys Chem C 111:7735

    CAS  Google Scholar 

  38. Gyargas BJ, Wiggins B, Zosel M, Hipps KW (2005) Langmuir 21:919

    Google Scholar 

  39. Ogunrinde A, Hipps KW, Scudiero L (2006) Langmuir 22:5697

    CAS  Google Scholar 

  40. Katsonis N, Marchenko A, Fichou D (2003) J Am Chem Soc 125:13682

    CAS  Google Scholar 

  41. Piot L, Marchenko A, Wu J, Müllen K, Fichou D (2005) J Am Chem Soc 125:13682

    Google Scholar 

  42. Jiang P, Nion A, Marchenko A, Piot L, Fichou D (2006) J Am Chem Soc 128:12390

    CAS  Google Scholar 

  43. Yokoyama T, Yokoyama S, Kamikado T, Okuno Y, Mashiko S (2001) Nature 413:619

    CAS  Google Scholar 

  44. Chen W, Loh KP, Xu H, Wee ATS (2004) Appl Phys Lett 84:281

    CAS  Google Scholar 

  45. Chen W, Loh KP, Xu H, Wee ATS (2004) Langmuir 20:10779

    CAS  Google Scholar 

  46. Chen W, Xu H, Liu L, Gao X, Qi D, Peng G, Tan SC, Feng Y, Loh KP, Wee ATS (2005) Surf Sci 596:176

    CAS  Google Scholar 

  47. Chen W, Zhang HL, Xu H, Tok ES, Loh KP, Wee ATS (2006) J Phys Chem 110:21873

    CAS  Google Scholar 

  48. Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J (2004) Science 303:217

    CAS  Google Scholar 

  49. Griessl S, Lackinger M, Edelwirth M, Hietschold M, Heckl WM (2002) Single Mol 3:25

    CAS  Google Scholar 

  50. Dmitriev A, Lin N, Weckesser J, Barth JV, Kern K (2002) J Phys Chem B 106:6907

    CAS  Google Scholar 

  51. Griessl S, Lackinger M, Jamitsky F, Markert T, Hietschold M, Heckl WM (2004) J Phys Chem B 108:11556

    CAS  Google Scholar 

  52. Lackinger M, Griessl S, Heckl WM, Hietschold M, Flynn GW (2005) Langmuir 21:4984

    CAS  Google Scholar 

  53. Su GJ, Zhang HM, Wan LJ, Bai CL, Wandlowski T (2004) J Phys Chem B 108:1931

    CAS  Google Scholar 

  54. Ishikawa Y, Ohira A, Sakata M, Hirayama C, Kunitake M (2002) Chem Commun 2652

    Google Scholar 

  55. Lu J, Zeng QD, Wang C, Zheng QI, Wan L, Bai C (2002) J Mater Chem 12:2856

    CAS  Google Scholar 

  56. Payer D, Comisso A, Dmitriev A, Strunskus T, Lin N, Woll C, De Vita A, Barth JV, Kern K (2007) Chem Eur J 13:3900

    CAS  Google Scholar 

  57. Griessl SJH, Lackinger M, Jamitzki F, Markert T, Hietschold M, Heckl WM (2004) Langmuir 20:9403

    CAS  Google Scholar 

  58. Walzer K, Sternberg M, Hietschold M (1998) Surf Sci 415:376

    CAS  Google Scholar 

  59. Lackinger M, Griessl S, Markert T, Jamitzky F, Heckl WM (2004) J Phys Chem B 108:13652

    CAS  Google Scholar 

  60. Kampschulte L, Lackinger M, Maier AK, Kishore RSK, Griessl S, Schmittel M, Heckl WM (2006) J Phys Chem B 110:10829

    CAS  Google Scholar 

  61. Ruben M, Payer D, Landa A, Comisso A, Gattinoni C, Lin N, Collin JP, Sauvage JP, De Vita A, Kern K (2006) J Am Chem Soc 128:15644

    CAS  Google Scholar 

  62. Nath KG, Ivasenko A, Miwa JA, Dang H, Wuest JD, Nanci A, Perepichka DF, Rosei F (2006) J Am Chem Soc 128:4212

    CAS  Google Scholar 

  63. Hibino M, Sumi A, Tsuchiya H, Hatta I (1998) Phys Chem B 102:4544

    CAS  Google Scholar 

  64. Wintgens D, Yablon DG, Flynn GW (2003) J Phys Chem B 107:173

    CAS  Google Scholar 

  65. Wei Y, Kannappan K, Flynn GW, Zimmt MB (2004) J Am Chem Soc 126:5318

    CAS  Google Scholar 

  66. Ye Y, Sun W, Wang Y, Shao X, Xu X, Cheng F, Li J, Wu K (2007) J Phys Chem C 111:10138

    CAS  Google Scholar 

  67. McLeod JM, Ivasenko O, Perepichka DF, Rosei F (2007) Nanotechnology 18:424031

    Google Scholar 

  68. Kampschulte L, Griessl S, Heckl WM, Lackinger M (2005) J Phys Chem B 109:14074

    CAS  Google Scholar 

  69. Theobald JA, Oxtoby NS, Phillips MA, Champness NR, Beton PH (2003) Nature 424:1029

    CAS  Google Scholar 

  70. Theobald JA, Oxtoby NS, Champness NR, Beton PH, Dennis TJS (2005) Langmuir 21:2038

    CAS  Google Scholar 

  71. Perdigao LMA, Perkins EW, Ma J, Staniec PA, Rogers BL, Champness NR, Beton PH (2006) J Phys Chem B 110:12539

    CAS  Google Scholar 

  72. Perdigao LMA, Champness NR, Beton PH (2006) Chem Commun 538

    Google Scholar 

  73. Staniec PA, Perdigao LMA, Rogers BL, Champness NR, Beton PH (2007) J Phys Chem B 111:886

    CAS  Google Scholar 

  74. Xu W, Dong M, Gersen H, Rauls E, Vasquez-Campos S, Crego-Calama M, Reinhouldt DN, Stensgaard I, Laegsgaard E, Linderoth TR, Besenbacher F (2007) Small 3:854

    CAS  Google Scholar 

  75. Ma J, Rogers BL, Humphry MJ, Ring DJ, Goretzki G, Champness NR, Beton PH (2006) J Phys Chem B 110:12207

    CAS  Google Scholar 

  76. Gong JR, Yan H, Yan QH, Xu LP BO ZS, Wal LJ (2006) J Am Chem Soc 128:12384

    CAS  Google Scholar 

  77. Gong JR, Zhao JL, Lei SB, Wan LJ, Bo ZS (2003) Langmuir 19:10130

    Google Scholar 

  78. Pawin G, Wong KL, Kwon KY, Bartels L (2006) Science 313:961

    CAS  Google Scholar 

  79. Wong KL, Pawin G, Kwon KY, Lin X, Jiao T, Solanki U, Fawcett RHJ, Bartels L, Stolbov S, Rahman TS (2007) Science 315:1391

    CAS  Google Scholar 

  80. Stöhr M, Wahl M, Galka CH, Riehm T, Jung TA, Gade LH (2005) Angew Chem Int Ed 117:7560

    Google Scholar 

  81. Wahl MA, Stohr M, Spillmann H, Jung TA, Gade LH (2007) Chem Commun 13:1349

    Google Scholar 

  82. Stöhr M, Wahl M, Spillmann H, Gade LH Jung TA (2007) Small 3:1336

    Google Scholar 

  83. Moresco F (2004) Phys Rep 399:175

    CAS  Google Scholar 

  84. Bonifazi D, Kiebele A, Stöhr M, Cheng F, Jung TA, Diederich F, Spillmann H (2007) Adv Funct Mater 17:1051

    CAS  Google Scholar 

  85. Bonifazi D, Spillmann H, Kiebele A, De Wild M, Seiler P, Cheng F, Güntherodt J, Jung TA, Diederich F (2004) Angew Chem Int Ed 43:4759

    CAS  Google Scholar 

  86. Spillmann H, Kiebele A, Stöhr M, Jung TA, Bonifazi D, Cheng F, Diederich F (2006) Adv Mater 18:275

    CAS  Google Scholar 

  87. Kiebele A, Bonifazi D, Cheng F, Stöhr M, Diederich F, Jung TA, Spillmann H (2006) Chem Phys Chem 7:1462

    CAS  Google Scholar 

  88. Wintjies N, Bonifazi D, Cheng F, Kiebele A, Stöhr M, Jung TA, Spillmann H, Diederich F (2007) Angew Chem Int Ed 46:4089

    Google Scholar 

  89. Lin N, Dmitriev A, Weckesser J, Barth JV, Kern K (2002) Angew Chem Int Ed 41:4779

    CAS  Google Scholar 

  90. Spillmann H, Dmitriev A, Lin N, Messina P, Barth JV, Kern K (2003) J Am Chem Soc 125:10725

    CAS  Google Scholar 

  91. Messina P, Dmitriev A, Lin N, Spillmann H, Abel M, Barth JV, Kern K (2002) J Am Chem Soc 124:1400

    Google Scholar 

  92. Classen T, Fratesi G, Costantini G, Fabris S, Stadler F, Kim C, De Gironcoli S, Baroni S, Kern K (2005) Angew Chem Int Ed 44:6142

    CAS  Google Scholar 

  93. Dmitriev A, Spillmann H, Lin N, Barth JV, Kern K (2003) Angew Chem Int Ed 42:2670

    CAS  Google Scholar 

  94. Stephanow S, Lingenfelder M, Dmitriev A, Spillmann H, Lin N, Deng X, Cai C, Barth JV, Kern K (2004) Nat Mater 3:229

    Google Scholar 

  95. Stepanow S, Lin N, Payer D, Schlickum U, Klappenberger F, Zoppellaro G, Ruben M, Brune H, Barth JV, Kern K (2007) Angew Chem Int Ed 46:710

    CAS  Google Scholar 

  96. Clair S, Pons S, Brune H, Kern K, Barth JV (2005) Angew Chem Int Ed 44:7294

    CAS  Google Scholar 

  97. Stepanow S, Lin N, Barth JV, Kern K (2006) Chem Commun 2153

    Google Scholar 

  98. Méndez J, Caillard R, Otero G, Nicoara N, Martin-Gago JA (2006) Adv Mater 18:2048

    Google Scholar 

  99. Auwärter W, Weber-Bargioni, Brink S, Riemann, Schiffrin A, Ruben M, Barth J (2007) Chem Phys Chem 8:250

    Google Scholar 

  100. Balzani V, Venturi M, Credi A (2003) Molecular Devices and Machines. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  101. Mena-Osteritz E, Bäuerle P (2006) Adv Mater 18:447

    CAS  Google Scholar 

  102. Bäuerle P, Ammann M, Wilde M, Götz G, Mena-Osteritz E, Rang A, Schalley CA (2007) Angew Chem Int Ed 46:383

    Google Scholar 

  103. Mena-Osteritz E (2002) Adv Mater 14:609

    CAS  Google Scholar 

  104. Krömer J, Rios-Carreras I, Fuhrmann G, Musch C, Wunderlin M, Debaerdemaeker T, Mena-Osteritz E, Bäuerle P (2000) Angew Chem Int Ed 39:3481

    Google Scholar 

  105. Pan GB, Cheng XH, Hoger S, Freyland W (2006) J Am Chem Soc 128:4218

    CAS  Google Scholar 

  106. Kossev I, Reckien W, Kirchner, Felder T, Nieger M, Schalley CA, Vögtle F, Sokolowski M (2007) Adv Funct Mater 17:513

    CAS  Google Scholar 

  107. Hunter CA (1992) J Am Chem Soc 114:5303

    CAS  Google Scholar 

  108. Herrmann U, Jonischkeit T, Bargon J, Hahn U, Li QY, Schalley CA, Vogel E Vögtle F (2002) Anal Bioanal Chem 372:611

    CAS  Google Scholar 

  109. Pan GB, Liu JM, Zhang HM, Wan LJ, Zheng QY, Bai CL (2003) Angew Chem Int Ed 42:2747

    CAS  Google Scholar 

  110. Pan GB, Wan LJ, Zheng QY, Bai CL (2003) Chem Phys Lett 367:711

    CAS  Google Scholar 

  111. Sakai T, Ohira A, Sakata M, Hirayama C, Kunitake M (2001) Chem Lett 782

    Google Scholar 

  112. Yoshomoto S, Tsusumi E, Narita R, Murata Y, Murata M, Fujiwara K, Komatsu K, Ito O, Itaya K (2007) J Am Chem Soc 129:4366

    Google Scholar 

  113. Itaka K, Yamashiro M, Ymaguchi J, Haemori M, Yaginuma S, Matsumoto Y, Kondo M, Koinuma H (2006) Adv Mater 18:1713

    CAS  Google Scholar 

  114. Furukawa S, Tahara K, De Schryver F, Van der Auweraer M, Tobe Y, De Feyter S (2007) Angew Chem Int Ed 46:2831

    CAS  Google Scholar 

  115. Tahata K, Furukawa S, Uji-i H, Uchino T, Ichikawa T, Zhang J, Mamdouh W, Sonoda M, De Schryver, De Feyter S, Tobe Y (2006) J Am Chem Soc 128:16613

    Google Scholar 

  116. Schull G, Douillard L, Fiorini-Debuisschert C, Charra F, Mathevet F, Kreher D, Attias AJ (2006) Nano Lett 6:1360

    CAS  Google Scholar 

  117. Schull G, Douillard L, Fiorini-Debuisschert C, Charra F, Mathevet F, Kreher D, Attias AJ (2006) Adv Mater 18:2954

    CAS  Google Scholar 

  118. Xu S, Zeng Q, Lu J, Wang C, Wan L, Bai CL (2003) Surf Sci 538:L451

    CAS  Google Scholar 

  119. Nishiyama F, Yokoyama T, Kamikado T, Yokoyama T, Mashiko S, Sakaguchi K, Kikuchi K (2007) Adv Mater 19:117

    CAS  Google Scholar 

  120. Kröger J, Néel N, Jensen H, Berndt R, Rurali R, Lorente N (2006) J Phys: Condens Matter 18:S51

    Google Scholar 

  121. Néel N, Kröger J, Berndt R (2006) Adv Mater 18:174

    Google Scholar 

  122. Néel N, Kröger J, Berndt R (2006) Appl Phys Lett 88:163101

    Google Scholar 

  123. Xiao W, Ruffieux P, Ait Mansour K, Gröning O, Palotas K, Hofer WA, Gröning P, Fasel R (2006) J Phys Chem B 110:21395

    Google Scholar 

  124. Cañas-Ventura ME, Xiao W, Wasserfallen D, Müllen K, Brune H, Barth JV, Fasel R (2007) Angew Chem Int Ed 46:1814

    Google Scholar 

  125. Ertl G (1967) Surf Sci 6:208

    Google Scholar 

  126. Jensen F, Besenbacher F, Laesgaard E, Stensgaard I (1990) Phys Rev B 41:10233

    CAS  Google Scholar 

  127. Coulman DJ, Wintterlin J, Behm RJ, Ertl G (1990) Phys Rev Lett 64:1761

    CAS  Google Scholar 

  128. Besenbacher F, Jensen F, Lægsgaard E, Mortensen K, Stensgaard I (1991) J Vac Sci Technol B 9:874

    CAS  Google Scholar 

  129. Kern K, Niheus H, Schatz A, Zeppenfeld P, Goerge J, Comsa G (1991) Phys Rev Lett 67:855

    CAS  Google Scholar 

  130. Otero R, Naitoh Y, Rosei F, Jiang P, Thostrup P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C, Besenbacher F (2004) Angew Chem Int Ed 43:2092

    CAS  Google Scholar 

  131. Pedersen MØ, Murray PWH, Lægsgaard E, Stensgaard I, Besenbacher F (1997) Surf Sci 389:300

    CAS  Google Scholar 

  132. Otero R, Rosei F, Naitoh Y, Jiang P, Thostrup P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C, Besenbacher F (2004) Nano Lett 4:75

    CAS  Google Scholar 

  133. Schunack M, Rosei F, Naitoh Y, Jiang P, Gourdon A, Lægsgaard A, Stensgaard I, Joachim C, Besenbacher F (2002) J Chem Phys 117:6259

    CAS  Google Scholar 

  134. Rosei F, Schunack M, Jiang P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C, Besenbacher F (2002) Science 296:328

    CAS  Google Scholar 

  135. Cicoira F, Miwa JA, Melucci M, Barbarella G, Rosei F (2006) Small 2:1366

    CAS  Google Scholar 

  136. Cicoira F, Miwa JA, Perepichka DF, Rosei F (2007) J Phys Chem A 111:12674

    CAS  Google Scholar 

  137. Koller G, Winter B, Oehzelt M, Ivanco J, Tetzer FP, Ramsey MG (2007) Organic Electronics 8:63

    CAS  Google Scholar 

  138. Oehzelt M, Grill L, Berkebile S, Koller G, Netzer FP, Ramsey MG (2007) Chem Phys Chem 8:1707

    CAS  Google Scholar 

  139. Bombis C, Moiseva M, Ibach H (2005) Phys Rev B 72:245408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Rosei .

Editor information

Paolo Samorì

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cicoira, F., Santato, C., Rosei, F. (2008). Two-Dimensional Nanotemplates as Surface Cues for the Controlled Assembly of Organic Molecules. In: Samorì, P. (eds) STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld. Topics in Current Chemistry, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2008_2

Download citation

Publish with us

Policies and ethics