Skip to main content

Carbohydrate Receptors of Bacterial Adhesins: Implications and Reflections

  • Chapter
  • First Online:
Glycoscience and Microbial Adhesion

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 288))

Abstract

Bacteria entering a host depend on adhesins to achieve colonization. Adhesins are bacterial surface structures mediating binding to host surficial areas. Most adhesins are composed of one or several proteins. Usually a single bacterial strain is able to express various adhesins. The adhesion type expressed may influence host-, tissue or even cell tropism of Gram-negative and of Gram-positive bacteria. The binding of fimbrial as well as of afimbrial adhesins of Gram-negative bacteria to host carbohydrate structures (=receptors) has been elucidated in great detail. In contrast, in Gram-positives, most well studied adhesins bind to proteinaceous partners. Nevertheless, for both bacterial groups the binding of bacterial adhesins to eukaryotic carbohydrate receptors is essential for establishing colonization or infection. The characterization of this interaction down to the submolecular level provides the basis for strategies to interfere with this early step of infection which should lead to the prevention of subsequent disease. However, this goal will not be achieved easily because bacterial adherence is not a monocausal event but rather mediated by a variety of adhesins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2:376–381

    CAS  Google Scholar 

  2. Hochhut B, Dobrindt U, Hacker J (2006) The contribution of pathogenecity islands to the evolution of bacterial pathogens. ASM Press, Washington

    Google Scholar 

  3. Nougayrede JP, Homburg S, Taieb F et al. (2006) Escherichia coli. induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851

    Article  CAS  Google Scholar 

  4. Ofek I, Hasty DL, Doyle JRJ (2003) Bacterial adhesion to animal cells and tissues. ASM Press, Washington

    Google Scholar 

  5. Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    Article  CAS  Google Scholar 

  6. Sharon N, Lis H (1989) Lectins as cell recognition molecules. Science 246:227–234

    Article  CAS  Google Scholar 

  7. Sharon N, Lis H (2003) Lectins, 2nd edn. Kluwer Academic, Dordrecht

    Google Scholar 

  8. Khan AS, Schifferli DM (1994) A minor 987P protein different from the structural fimbrial subunit is the adhesin. Infect Immun 62:4233–4243

    CAS  Google Scholar 

  9. Khan AS, Johnston NC, Goldfine H et al. (1996) Porcine 987P glycolipid receptors on intestinal brush borders and their cognate bacterial ligands. Infect Immun 64:3688–3693

    CAS  Google Scholar 

  10. Yuyama Y, Yoshimatsu K, Ono E et al. (1993) Postnatal change of pig intestinal ganglioside bound by Escherichia coli. with K99 fimbriae. J Biochem 113:488–492

    CAS  Google Scholar 

  11. Gornik O, Dumic J, Flögel M et al. (2006) Glycoscience – a new frontier in rational drug design. Acta Pharm 56:19–30

    CAS  Google Scholar 

  12. Schulze IT (1975) The biologically active proteins of influenza virus: the hemagglutinin. In: Kilbourne ED (ed) The influenza viruses and influenza. Academic Press, New York, pp 53–82

    Google Scholar 

  13. Lefkowitz SS, Lefkowitz DL (1999) macrophage candidicidal activity of a complete glyconutritional formulation verses aloe polymannose. Proc Fisher Inst Med Res 1:5–7

    Google Scholar 

  14. Cao Z, Jefferson DM, Panjwani N (1998) Role of carbohydrate mediated adherence in cytopathogenic mechanism of Acanthamoeba. J Biol Chem 273:15838–15845

    Article  CAS  Google Scholar 

  15. Choudhury D, Thompson A, Stojanoff V et al. (1999) X-ray structure of the FimC–FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066

    Article  CAS  Google Scholar 

  16. Dupres V, Menozzi FD, Locht C et al. (2005) Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat Methods 2:515–520

    Article  CAS  Google Scholar 

  17. Hacker J, Bender L, Ott M et al. (1990) Deletion of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli. isolates. Microb. Pathogenesis 8:213–225

    Article  CAS  Google Scholar 

  18. Stromberg N, Marklund B-I, Lund B et al. (1990) Host-specificity of uropathogenic Escherichia coli. depends on differences in binding specificity to Gala 1–4Gal-containing isoreceptors. EMBO 9:2001–2010

    CAS  Google Scholar 

  19. Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760:527–537

    Article  CAS  Google Scholar 

  20. Buts L, Bouckaert J, De Genst E et al. (2003) The fimbrial adhesin F17-G of enterotoxigenic E. coli has an immunoglobulin like lectin domain that binds N-acetylglucosamine. Mol Microbiol 49:705–715

    Article  CAS  Google Scholar 

  21. Dodson KW, Pinkner JS, Rose T et al. (2001) Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743

    Article  CAS  Google Scholar 

  22. Sung MA, Fleming K, Chen HA et al. (2001) The solution structure of PapGII from uropathogenic Escherichia coli. and its recognition of glycolipid receptors. EMBO Rep 2:621–627

    Article  CAS  Google Scholar 

  23. Khan AS, Kniep B, Oelschlaeger TA et al. (2000) Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect Immun 68:3541–3547

    Article  CAS  Google Scholar 

  24. Jones CH, Pinkner JS, Roth R et al. (1995) FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA 92:2081–2085

    Article  CAS  Google Scholar 

  25. Ponniah S, Endres RO, Hasty DL et al. (1991) Fragmentation of Escherichia coli. type 1 fimbriae exposes cryptic D-mannose-binding sites. J Bacteriol 173:4195–4202

    CAS  Google Scholar 

  26. Sokurenko EV, Chesnokova V, Dykhuizen DE et al. (1998) Pathogenic adaptation of Escherichia coli. by natural variation of the FimH adhesin. Proc Natl Acad Sci USA 95:8922–8926

    Article  CAS  Google Scholar 

  27. Sharon N (1987) Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett 217:145–157

    Article  CAS  Google Scholar 

  28. Firon N, Ofek I, Sharon N (1983) Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium. Carbohydr Res 120:235–249

    Article  CAS  Google Scholar 

  29. Firon N, Ofek I, Sharon N (1984) Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria. Infect Immun 43:1088–1090

    CAS  Google Scholar 

  30. Hung CS, Bouckaert J, Hung D et al. (2002) Structural basis of tropism of Escherichia coli. to the bladder during urinary tract infection. Mol Microbiol 44:903–915

    Article  CAS  Google Scholar 

  31. Bouckaert J, Berglund J, Schembri M et al. (2005) Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli. FimH adhesin. Mol Microbiol 55:441–455

    Article  CAS  Google Scholar 

  32. Duncan MJ, Mann EL, Cohen MS et al. (2005) The distinct binding specificities exhibited by enterobacterial type 1 fimbriae are determined by their fimbrial shafts. J Biol Chem 280:37707–37716

    Article  CAS  Google Scholar 

  33. Pieters RJ (2007) Intervention with bacterial adhesion by multivalent carbohydrates. Med Res Rev 27:796–816

    Article  CAS  Google Scholar 

  34. Korhonen TK, Väisänen-Rhen V, Rhen M et al. (1984) Escherichia coli. fimbriae recognizing sialyl galactosides. J Bacteriol 159:762–766

    CAS  Google Scholar 

  35. Korhonen TK, Valtonen MV, Parkkinen J et al. (1985) Serotypes, hemolysin production, and receptor recognition of Escherichia coli. strains associated with neonatal sepsis and meningitis. Infect Immun 48:486–491

    CAS  Google Scholar 

  36. Prasadarao NV, Wass CA, Hacker J et al. (1993) Adhesion of S-fimbriated Escherichia coli. to brain glycolipids mediated by sfaA gene-encoded protein of S-fimbriae J Biol chem 268:10356–10363

    CAS  Google Scholar 

  37. Karlsson KA (1998) Meaning and therapeutic potential of microbial recognition of host glycoconjugates. Mol Microbiol 29:1–11

    Article  CAS  Google Scholar 

  38. Roche N, Angstrom J, Hurtig M et al. (2004) Helicobacter pylori and complex gangliosides. Infect Immun 72:1519–1529

    Article  CAS  Google Scholar 

  39. Patti JM, Allen BL, McGavin MJ et al. (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617

    Article  CAS  Google Scholar 

  40. Lun, ZR, Wang, QP, Chen, XG et al. (2007) Streptococcus suis: an emerging zoonotic pathogen. Lancet Infect Dis 7:201–209

    Article  Google Scholar 

  41. Haataja S, Tikkanen K, Liukkonen J et al. (1993) Characterization of a novel bacterial adhesion specificity of Streptococcus suis recognizing blood group P receptor oligosaccharides. J Biol Chem 268:4311–4317

    CAS  Google Scholar 

  42. Haataja S, Tikkanen K, Nilsson U et al. (1994) Oligosaccharide-receptor interaction of the Gal alpha 1–4Gal binding adhesin of Streptococcus suis. Combining site architecture and characterization of two variant adhesin specificities. J Biol Chem 269:27466–27472

    CAS  Google Scholar 

  43. Haataja S, Tikkanen K, Hytonen J et al. (1996) The Galα 1–4 Gal-binding adhesin of Streptococcus suis, a Gram-positive meningitis-associated bacterium. Adv Exp Med Biol 408:25–34

    Article  CAS  Google Scholar 

  44. Tikkanen, K, Haataja, S, Francois-Gerard, C et al. (1995) Purification of a galactosyl-alpha 1–4-galactose-binding adhesin from the Gram-positive meningitis-associated bacterium Streptococcus suis. J Biol Chem 270:28874–28878

    Article  CAS  Google Scholar 

  45. Takamatsu D, Bensing BA, Prakobphol A et al (2006) Binding of the streptococcal surface glycoproteins GspB and Hsa to human salivary proteins. Infect Immun 74:1933–1940

    Article  CAS  Google Scholar 

  46. Bensing BA, Gibson BW, Sullam PM (2004) The Streptococcus gordonii platelet binding protein GspB undergoes glycosylation independently of export. J Bacteriol 186:638–645

    Article  CAS  Google Scholar 

  47. Takamatsu, D, Bensing, BA, Cheng, H et al. (2005) Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol Microbiol 58:380–392

    Article  CAS  Google Scholar 

  48. Ligtenberg AJ, Veerman EC, Nieuw Amerongen AV (2000) A role for Lewis a antigens on salivary agglutinin in binding to Streptococcus mutans. Antonie Van Leeuwenhoek 77:21–30

    Article  CAS  Google Scholar 

  49. Barthelson R, Mobasseri A, Zopf D et al. (1998) Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by sialylated oligosaccharides. Infect Immun 66:1439–1444

    CAS  Google Scholar 

  50. Idanpaan-Heikkila I, Simon PM, Zopf D et al. (1997) Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis 176:704–712

    Article  CAS  Google Scholar 

  51. Krivan HC, Roberts DD, Ginsburg V (1988) Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcβ1–4Gal found in some glycolipids. Proc Natl Acad Sci USA 85:6157–6161

    Article  CAS  Google Scholar 

  52. Costerton, JW, Stewart, PS, Greenberg, EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  Google Scholar 

  53. Goetz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    Article  Google Scholar 

  54. Ohlsen K, Lorenz U (2007) Novel targets for antibiotics in Staphylococcus aureus. Future Microbiol 2:655–666

    Article  CAS  Google Scholar 

  55. Mack D, Becker P, Chatterjee I et al. (2004) Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol 294:203–212

    Article  CAS  Google Scholar 

  56. Heilmann C, Schweitzer O, Gerke C et al. (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20:1083–1091

    Article  CAS  Google Scholar 

  57. Kozitskaya S, Cho SH, Dietrich K et al. (2004) The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun 72:1210–1215

    Article  CAS  Google Scholar 

  58. Mack D, Fischer W, Krokotsch A et al. (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    CAS  Google Scholar 

  59. Anderson KL, Billington J, Pettigrew D et al. (2004) An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol Cell 15:647–657

    Article  CAS  Google Scholar 

  60. Oelschlaeger TA (2001) Adhesins as invasins. Int J Med Microbiol 291:7–14

    Article  CAS  Google Scholar 

  61. Korhonen TK, Virkola R, Lähteenmäki K et al. (1992) Penetration of fimbriated enteric bacteria through basement membranes: a hypothesis. FEMS Microbiol Lett 79:307–312

    CAS  Google Scholar 

  62. Hernandes RT, Silva RM, Carneiro SM et al. (2008) The localized adherence pattern of an typical enteropathogenic Escherichia coli. is mediated by intimin micron and unexpectedly promotes HeLa cell invasion. Cell Microbiol 10:415–425

    CAS  Google Scholar 

  63. Jepson MA, Pellegrin S, Peto L et al. (2003) Synergistic roles for the Map and Tir effector molecules in mediating uptake of enteropathogenic Escherichia coli. (EPEC) into non-phagocytic cells. Cell Microbiol 5:773–783

    Article  CAS  Google Scholar 

  64. DeVinney R, Gauthier A, Abe A et al. (1999) Enteropathogenic Escherichia coli: a pathogen that inserts its own receptor into host cells. Cell Mol Life Sci 55:961–976

    CAS  Google Scholar 

  65. Sinclair JF, Dean-Nystrom EA, O'Brien AD (2006) The established intimin receptor Tir and the putative eucaryotic intimin receptors nucleolin and ²1 integrin localize at or near the site of enterohemorrhagic Escherichia coli. O157:H7 adherence to enterocytes in vivo. Infect Immun 74:1255–1265

    Article  CAS  Google Scholar 

  66. Selvarangan R, Goluszko P, Singhal J et al. (2004) Interaction of Dr adhesin with collagen type IV is a critical step in Escherichia coli. renal persistence. Infect Immun 72:4827–4835

    Article  CAS  Google Scholar 

  67. Lillehoj EP, Kim BT, Kim KC (2002) Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. Am J Physiol Lung Cell Mol Physiol 282:L751–L756

    CAS  Google Scholar 

  68. Soto GE, Hultgren SJ (1999) Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181:1059–1071

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ohlsen, K., Oelschlaeger, T.A., Hacker, J., Khan, A.S. (2008). Carbohydrate Receptors of Bacterial Adhesins: Implications and Reflections. In: Lindhorst, T., Oscarson, S. (eds) Glycoscience and Microbial Adhesion. Topics in Current Chemistry, vol 288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2008_10

Download citation

Publish with us

Policies and ethics