Studies on the Conformational Features of Neomycin-B and its Molecular Recognition by RNA and Bacterial Defense Proteins

  • Juan Luis AsensioEmail author
  • Agatha Bastida
  • Jesús Jiménez-BarberoEmail author
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 273)


According to NMR and molecular dynamics simulations, the conformational behavior of natural aminoglycosidesis characterized by a remarkable flexibility, with different conformations, even non-exo-anomericones, in fast exchange. Very probably, this feature allows the adaptation of these ligands to the spatialand electronic requirements of different receptors. The large diversity of structures adopted by aminoglycosidesin the binding pocket of the different RNA receptors and the distinct enzymes involved in bacterial resistanceare consistent with this view. This conformational diversity can, in certain favorable cases, be exploitedin the design of new antibiotic derivatives not susceptible to enzymatic inactivation, by designing tailor-madeconformationally locked aminoglycosides.


Glycosidic Linkage Enzymatic Inactivation Aminoglycoside Antibiotic Sugar Unit Conformational Restriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walter F, Vicens Q, Westhof E (1999) Curr Opin Chem Biol 3:694–704 CrossRefGoogle Scholar
  2. 2.
    Hermann T (200) Angew Chem Int Ed 39:1890–1905 Google Scholar
  3. 3.
    Schroeder R, Waldsich C, Wank H (2000) EMBO J 19:1–9 CrossRefGoogle Scholar
  4. 4.
    Sucheck JS, Wong CH (2000) Curr Opin Chem Biol 4:678–686 CrossRefGoogle Scholar
  5. 5.
    Magnet S, Blanchard J (2005) Chem Rev 105:477–497 CrossRefGoogle Scholar
  6. 6.
    Smith CA, Baker EN (2002) Curr Drug Targets 2:143–160 CrossRefGoogle Scholar
  7. 7.
    Espinosa JF, Cañada J, Asensio JL, Dietrich H, Martín-Lomas M, Schmidt RR, Jiménez-Barbero J (1996) Angew Chem Int Ed Engl 35:303–306 CrossRefGoogle Scholar
  8. 8.
    Espinosa JF, Cañada J, Asensio JL, Dietrich H, Martín-Lomas M, Schmidt RR, Jiménez-Barbero J (1996) Angew Chem 108:323–326 CrossRefGoogle Scholar
  9. 9.
    Espinosa JF, Montero E, Vian A, Garcia J, Dietrich H, Martín-Lomas M, Schmidt RR, Imberty A, Cañada J, Jiménez-Barbero J (1998) J Am Chem Soc 120:10862–10871 CrossRefGoogle Scholar
  10. 10.
    Milton MJ, Bundle DR (1998) J Am Chem Soc 120:10547–10548 CrossRefGoogle Scholar
  11. 11.
    Garcia A, Montero E, Muñoz JL, Espinosa JF, Vian A, Asensio JL, Cañada FJ, Jimenez-Barbero J (2002) J Am Chem Soc 124:4804–4810 CrossRefGoogle Scholar
  12. 12.
    Dabrowski J, Kozar T, Grosskurth H, Nifantév NE (1995) J Am Chem Soc 117:5534–5539 CrossRefGoogle Scholar
  13. 13.
    Landersjo C, Stenutz R, Widmalm G (1997) J Am Chem Soc 119:8695–8698 CrossRefGoogle Scholar
  14. 14.
    Asensio JL, Hidalgo A, Cuesta I, González C, Cañada J, Vicent C, Chiara JL, Cuevas G, Jiménez-Barbero J (2002) J Chem Soc Chem Comm 2232–2233 Google Scholar
  15. 15.
    Asensio JL, Hidalgo A, Cuesta I, González C, Cañada J, Vicent C, Chiara JL, Cuevas G, Jiménez-Barbero J (2002) Chem Eur J 8(22):5228–5240 CrossRefGoogle Scholar
  16. 16.
    Pearlman DA (1994) J Biomol NMR 4:1–16 Google Scholar
  17. 17.
    Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Siebal G, Kollman P (1995) Comp Phys Commun 91:1–41 CrossRefGoogle Scholar
  18. 18.
    Asensio JL, García A, Murillo MT, Fernández-Mayoralas A, Cañada FJ, Johnson CR, Jiménez-Barbero J (1999) J Am Chem Soc 121:11318–11331 CrossRefGoogle Scholar
  19. 19.
    Xu Q, Gitti R, Bush CA (1996) Glycobiology 6:281–288 CrossRefGoogle Scholar
  20. 20.
    Miller KE, Mukhopadhyay C, Cagas P, Bush CA (1992) Biochemistry 31:6703–6709 CrossRefGoogle Scholar
  21. 21.
    Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Nature 407:340–348 CrossRefGoogle Scholar
  22. 22.
    Vicens Q, Westhof E (2001) Structure 9:647–658 CrossRefGoogle Scholar
  23. 23.
    Vicens Q, Westhof E (2002) Chem Biol 9:747–755 CrossRefGoogle Scholar
  24. 24.
    Yoshizawa S, Fourmy D, Puglisi JD (1998) EMBO J 17(22):6437–6448 CrossRefGoogle Scholar
  25. 25.
    Fourmy D, Recht MI, Blanchard AC, Puglisi JD (1996) Science 274:1367–1371 CrossRefGoogle Scholar
  26. 26.
    Lynch SR, Ruben L, Gonzalez RL Jr, Puglisi JD (2003) Structure 11:43–53 CrossRefGoogle Scholar
  27. 27.
    Kondo S, Iinuma K, Yamamoto H, Maeda K, Umezawa H (1975) J Antibiot 26:412–417 CrossRefGoogle Scholar
  28. 28.
    Kondo S, Hotta K (1999) J Infect Chemother 5:1 CrossRefGoogle Scholar
  29. 29.
    Inoue M, Nonoyama M, Okamoto R, Ida T (1994) Drugs Exp Clin Res 20:233–239 Google Scholar
  30. 30.
    Fujimura S, Tokue Y, Takahashi H, Nukiwa T, Hisamichi K, Mikami T, Watanabe A (1998) J Antimicrob Chemother 41:495–499 CrossRefGoogle Scholar
  31. 31.
    Roestamadji J, Graspas I, Mobashery S (1995) J Am Chem Soc 117:11060–11069 CrossRefGoogle Scholar
  32. 32.
    McKay GA, Roestamadji J, Mobashery S, Wright GD (1996) Antimicrob Agents Chemother 40:2648 Google Scholar
  33. 33.
    Haddad J, Vakulenko S, Mobashery S (1999) J Am Chem Soc 121:11922–11923 CrossRefGoogle Scholar
  34. 34.
    Grapsas I, Lerner SA, Mobashery S (2001) Arch Pharm 334:295 CrossRefGoogle Scholar
  35. 35.
    Smith CA, Baker EN (2002) Curr Drug Targets 2:143–160 CrossRefGoogle Scholar
  36. 36.
    Vicens Q, Westhof E (2003) Biopolymers 70:42–57 CrossRefGoogle Scholar
  37. 37.
    Pedersen LC, Benning MM, Holden HM (1995) Biochemistry 34:13305–13311 CrossRefGoogle Scholar
  38. 38.
    Vetting MW, Hegde SS, Javid-Majd F, Blanchard JS, Roderick SL (2002) Nat Struct Biol 9:653–658 CrossRefGoogle Scholar
  39. 39.
    Vetting MW, Magnet S, Nieves E, Roderick SL, Blanchard JS (2004) Chem Biol 11:565–573 CrossRefGoogle Scholar
  40. 40.
    Fong DH, Berghuis AM (2002) EMBO J 21:2323–2331 CrossRefGoogle Scholar
  41. 41.
    Asensio JL, Hidalgo A, Bastida A, Torrado M, Corzana F, García-Junceda E, Cañada J, Chiara JL, Jiménez-Barbero J (2005) J Am Chem Soc 127:8278–8279 CrossRefGoogle Scholar
  42. 42.
    Kaul M, Barbieri CM, Pilch DS (2004) J Am Chem Soc 126:3447–3453 CrossRefGoogle Scholar
  43. 43.
    Shandrick S, Zhao Q, Han Q, Ayida BK, Takahashi M, Winters GC, Simonsen KB, Vourloumis D, Hermann T (2004) Angew Chem Int Ed 43:3177–3182 CrossRefGoogle Scholar
  44. 44.
    Wang Y, Hamasaki K, Rando RR (1997) Biochemistry 36:768–779 CrossRefGoogle Scholar
  45. 45.
    Ryu DH, Litovchick A, Rando RR (2002) Biochemistry 41:10499–10509 CrossRefGoogle Scholar
  46. 46.
    Fourmy D, Recht MI, Puglisi JD (1998) J Mol Biol 277:347–362 CrossRefGoogle Scholar
  47. 47.
    Blount KF, Zhao F, Hermann T, Tor Y (2005) J Am Chem Soc 127(27):9818–9829 CrossRefGoogle Scholar
  48. 48.
    Zhao F, Zhao Q, Blount KF, Han Q, Tor Y, Hermann T (2005) Angew Chem Int Ed 44:5329–5334 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Instituto de Química Orgánica, CSICMadridSpain
  2. 2.Centro de Investigaciones Biológicas, CSICMadridSpain

Personalised recommendations