Skip to main content

Rate Equation Approaches to Amplification of Enantiomeric Excess and Chiral Symmetry Breaking

  • Chapter
  • First Online:
Amplification of Chirality

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 284))

Abstract

Theoretical models and rate equations relevant to the Soai reaction are reviewed. It is found thatin production of chiral molecules from an achiral substrate autocatalytic processes can induce either enantiomericexcess (ee) amplification or chiral symmetry breaking. The former means that the final ee value islarger than the initial value but is dependent upon it, whereas the latter means the selection of a uniquevalue of the final ee, independent of the initial value. The ee amplification takes place in an irreversiblereaction such that all the substrate molecules are converted to chiral products and the reaction comes toa halt. Chiral symmetry breaking is possible when recycling processes are incorporated. Reactionsbecome reversible and the system relaxes slowly to a unique final state. The difference between thetwo behaviors is apparent in the flow diagram in the phase space of chiral molecule concentrations. Theee amplification takes place when the flow terminates on a line of fixed points (or a fixed line),whereas symmetry breaking corresponds to the dissolution of the fixed line accompanied by the appearanceof fixed points. The relevance of the Soai reaction to the homochirality in life is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stryer L (1998) Biochemistry. Feeman and Company, New York

    Google Scholar 

  2. Pasteur L (1849) Comptes Rendus 28:477

    Google Scholar 

  3. Japp FR (1898) Nature 58:452

    Article  Google Scholar 

  4. Noyori R (2002) Angew Chem Int Ed 41:2008

    Article  CAS  Google Scholar 

  5. Calvin M (1969) Chemical Evolution. Oxford University Press, Oxford

    Google Scholar 

  6. Goldanskii VI, Kuz'min VV (1988) Z Phys Chem (Leipzig) 269:216

    CAS  Google Scholar 

  7. Gridnev ID (2006) Chem Lett 35:148

    Article  CAS  Google Scholar 

  8. Pearson K (1898) Nature 58:496

    Google Scholar 

  9. Pearson K (1898) Nature 59:30

    Article  Google Scholar 

  10. Mills WH (1932) Chem Ind (London) 51:750

    Article  CAS  Google Scholar 

  11. Soai K, Shibata T, Morioka H, Choji K (1995) Nature 378:767

    Article  CAS  Google Scholar 

  12. Soai K, Shibata T, Sato I (2000) Acc Chem Res 33:382

    Article  CAS  Google Scholar 

  13. Soai K, Sato I, Shibata T, Komiya S, Hayashi M, Matsueda Y, Imamura H, Hayase T, Morioka H, Tabira H, Yamamoto J, Kowata Y (2003) Tetrahedron: Asymmetry 14:185

    Article  CAS  Google Scholar 

  14. Gridnev ID, Serafimov JM, Quiney H, Brown JM (2003) Org Biomol Chem 1:3811

    Article  CAS  Google Scholar 

  15. Singleton DA, Vo LK (2003) Org Lett 5:4337

    Article  CAS  Google Scholar 

  16. Frank FC (1953) Biochim Biophys Acta 11:459

    Article  CAS  Google Scholar 

  17. Landau LD, Khalatnikov IM (1954) Dokl Akad Nauk SSSR 96:469

    Google Scholar 

  18. Avetisov V, Goldanskii V (1996) Proc Natl Acad Sci USA 93:11435

    Article  CAS  Google Scholar 

  19. Girard C, Kagan HB (1998) Angew Chem Int Ed 37:2922

    Article  Google Scholar 

  20. Kondepudi DK, Asakura K (2001) Acc Chem Res 34:946

    Article  CAS  Google Scholar 

  21. Todd MH (2002) Chem Soc Rev 31:211

    Article  CAS  Google Scholar 

  22. Iwamoto K (2002) Phys Chem Chem Phys 4:3975

    Article  CAS  Google Scholar 

  23. Iwamoto K (2003) Phys Chem Chem Phys 5:3616

    Article  CAS  Google Scholar 

  24. Saito Y, Hyuga H (2004) J Phys Soc Jpn 73:33

    Article  CAS  Google Scholar 

  25. Saito Y, Hyuga H (2004) J Phys Soc Jpn 73:1685

    Article  CAS  Google Scholar 

  26. Saito Y, Hyuga H (2005) J Phys Soc Jpn 74:535

    Article  CAS  Google Scholar 

  27. Saito Y, Hyuga H (2005) J Phys Soc Jpn 74:1629

    Article  CAS  Google Scholar 

  28. Saito Y, Hyuga H (2005) Chirality selection models in a closed system. In: Linke AN (ed) Progress in chemical physics research, Chap 3. NOVA, New York, p 65

    Google Scholar 

  29. Shibata R, Saito Y, Hyuga H (2006) Phys Rev 74:026117–1

    Google Scholar 

  30. Sato I, Omiya D, Tsukiyama K, Ogi Y, Soai K (2001) Tetrahedron: Asymmetry 12:1965

    Article  CAS  Google Scholar 

  31. Sato I, Omiya D, Igarashi H, Kato K, Ogi Y, Tsukiyama K, Soai K (2003) Tetrahedron: Asymmetry 14:975

    Article  CAS  Google Scholar 

  32. Blackmond DG, McMillan CR, Ramdeehul S, Shorm A, Brown JM (2001) J Am Chem Soc 123:10103

    Article  CAS  Google Scholar 

  33. Buhse T (2003) Tetrahedron: Asymmetry 14:1055

    Article  CAS  Google Scholar 

  34. Islas JR, Lavabre D, Grevy J-M, Lamoneda RH, Cabrera HR, Micheau J-C, Buhse T (2005) Proc Natl Acad Sci USA 102:13743

    Article  CAS  Google Scholar 

  35. Lente G (2004) J Phys Chem 108:9475

    Article  CAS  Google Scholar 

  36. Lente G (2005) J Phys Chem 109:11058

    Article  CAS  Google Scholar 

  37. Brandenburg A, Multamaki T (2004) Int J Astrobiol 3:209

    Article  Google Scholar 

  38. Saito Y, Sugimori T, Hyuga H (2007) http://arXiv.org/abs/cond-mat/0612385

  39. Sandars PGH (2003) Orig Life Evol Biosph 33:575

    Article  CAS  Google Scholar 

  40. Brandenburg A, Andersen AC, Hofner S, Nilsson M (2005) Orig Life Evol Biosph 35:225

    Article  CAS  Google Scholar 

  41. Plasson R, Bersini H, Commeyras A (2004) Proc Natl Acad Sci USA 101:16733

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Saito .

Editor information

Kenso Soai

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saito, Y., Hyuga, H. (2007). Rate Equation Approaches to Amplification of Enantiomeric Excess and Chiral Symmetry Breaking. In: Soai, K. (eds) Amplification of Chirality. Topics in Current Chemistry, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2006_108

Download citation

Publish with us

Policies and ethics