Skip to main content

PcrA Helicase, a Molecular Motor Studied from the Electronic to the Functional Level

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 268))

Abstract

Molecular motors are adenosine tri-phosphate (ATP) hydrolysis-driven, cellular proteins responsible for a wide variety of different tasks, such as transport, energy metabolism, and DNA processing. Their operation cycle spans a wide range of length and time scales, from the localized and fast chemical reaction in the catalytic site(s) to the large scale and much slower conformational motions involved in the motors' physiological function. From a computational point of view, this means that currently there exists no single approach capable of capturing the whole spectrum of events during molecular motor function. In the present review, we show for PcrA helicase, a molecular motor involved in the unwinding of double-stranded DNA, how a combination of computational approaches can be used to examine PcrA's function in its entirety as well as in detail. Combined quantum mechanical/molecular mechanical simulations are used to study the catalytic ATP hydrolysis event and its coupling to protein conformational changes. Molecular dynamics simulations then provide a means of studying overall PcrA function on a nanosecond time scale. Finally, to reach physiologically relevant time scales, i.e., milliseconds, stochastic simulations are employed. We show that by combining the three stated approaches one can obtain insight into PcrA helicase function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ADP:

adenosine di-phosphate

ATP:

adenosine tri-phosphate

dsDNA:

double-stranded DNA

DNA:

deoxyribonucleic acid

MD:

molecular dynamics

MM:

molecular mechanics

nt:

nucleotide

P i :

phosphate

QM:

quantum mechanics

QM/MM:

quantum mechanical/molecular mechanical

RESP:

restrained electrostatic potential

RNA:

ribonucleic acid

SMD:

steered molecular dynamics

ssDNA:

single-stranded DNA

vdW:

van der Waals

References

  1. Li G, Cui Q (2004) J Phys Chem B 108:3342–3357

    Article  CAS  Google Scholar 

  2. Minehard TJ, Marzari N, Cooke R, Pate E, Kollman PA, Car R (2002) Biophys J 82:660–675

    Article  Google Scholar 

  3. Zheng W, Brooks BR (2005) Biophys J 89:167–178

    Article  CAS  Google Scholar 

  4. Fischer S, Windshügel B, Horak D, Holmes KC, Smith JC (2005) Proc Natl Acad Sci USA 102:6873–6878

    Article  CAS  Google Scholar 

  5. Kawakubo T, Okada O, Minami T (2005) Biophys Chem, 115:77–85

    Article  CAS  Google Scholar 

  6. Wriggers W, Schulten K (1999) Proteins: Struct Func Gen 35:262–273

    Article  CAS  Google Scholar 

  7. Oster G, Wang H (2000) Biochim Biophys Acta 1458:482–510

    Article  CAS  Google Scholar 

  8. Böckmann RA, Grubmüller H (2002) Nature Struct Biol 9:198–202

    Google Scholar 

  9. Ma J, Flynn TC, Cui Q, Leslie AGW, Walker JE, Karplus M (2002) Structure 10:921–931

    Article  CAS  Google Scholar 

  10. Dittrich M, Hayashi S, Schulten K (2003) Biophys J 85:2253–2266

    Article  CAS  Google Scholar 

  11. Strajbl M, Shurki A, Warshel A (2003) Proc Natl Acad Sci USA 100:14834–14839

    Article  CAS  Google Scholar 

  12. Dittrich M, Hayashi S, Schulten K (2004) Biophys J 87:2954–2967

    Article  CAS  Google Scholar 

  13. Cox K, Watson T, Soultanas P, Hirst J (2003) Proteins: Struct Func Gen 52:254–262

    Article  CAS  Google Scholar 

  14. Betterton M, Julicher F (2003) Phys Rev Lett 91:258103

    Article  CAS  Google Scholar 

  15. Betterton M, Julicher F (2005) Phys Rev E 71:011904

    Article  CAS  Google Scholar 

  16. Bhattacharjee S, Seno F (2003) J Phys A: Math Gen 36:L181-L187

    Article  CAS  Google Scholar 

  17. Bhattacharjee S (2004) Europhys Lett 65:574–580

    Article  CAS  Google Scholar 

  18. Subramanya H, Bird L, Brannigan J, Wigley D (1996) Nature 384:379–383

    Article  CAS  Google Scholar 

  19. Velankar S, Soultanas P, Dillingham M, Subramanya H, Wigley D (1999) Cell 97:75–84

    Article  CAS  Google Scholar 

  20. Wong I, Lohman TM (1992) Science 256:250–256

    Article  Google Scholar 

  21. Stasiak A, Tsaneva IR, West SC, Benson CJ, Yu X, Egelman EH (1994) Proc Natl Acad Sci USA 91:7618–7622

    Article  CAS  Google Scholar 

  22. Warshel A (1976) Nature 260:679–683

    Article  CAS  Google Scholar 

  23. Singh UC, Kollman PA (1986) J Comp Chem 7:718–730

    Article  CAS  Google Scholar 

  24. Field MJ, Bash PA, Karplus M (1990) J Comp Chem 11:700–733

    Article  CAS  Google Scholar 

  25. Stanley RJ, Boxer SG (1995) J Phys Chem 99:859–863

    Article  CAS  Google Scholar 

  26. Maseras F, Morokuma K (1995) J Comp Chem 16:1170–1179

    Article  CAS  Google Scholar 

  27. Bakowies D, Thiel W (1996) J Phys Chem 100:10580–10594

    Article  CAS  Google Scholar 

  28. Lyne PD, Hodoscek M, Karplus M (1999) J Phys Chem A 103:3462–3471

    Article  CAS  Google Scholar 

  29. Lyne D, Walsh O (2001) Computer Simulation of Biochemical Reactions with QM/MM Methods. In: Becker O, Mac Kerell A Jr, Roux B, Watanabe M (eds) Computational Biochemistry and Biophysics. Marcel Dekker Inc., New York

    Google Scholar 

  30. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  31. Théry V, Rinaldi D, Rivail J-L, Maigret B, Ferenczy GG (1994) J Comp Chem 15:269–282

    Article  Google Scholar 

  32. Bayly C, Cieplak P, Cornell W, Kollman P (1993) J Phys Chem 100:10269–10280

    Article  Google Scholar 

  33. Hayashi S, Ohmine I (2000) J Phys Chem B 104:10678–10691

    Article  CAS  Google Scholar 

  34. Warshel A, Weiss RM (1980) J Am Chem Soc 102:6218

    Article  CAS  Google Scholar 

  35. Warshel A (2003) Ann Rev Biophys Biomol Struct 32:425–443

    Article  CAS  Google Scholar 

  36. Dittrich M, Schulten K (2006) Structure 14:1345–1353

    Article  CAS  Google Scholar 

  37. Scheidig AJ, Burmester C, Goody RS (1999) Structure 7:1311–1324

    Article  CAS  Google Scholar 

  38. Ahmad Z, Senior AE (2004) J Biol Chem 44:46057–46064

    Article  CAS  Google Scholar 

  39. Dittrich M, Schulten K (2005) J Bioener Biomemb 37:441–444

    Article  CAS  Google Scholar 

  40. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comp Chem 4:187–217

    Article  CAS  Google Scholar 

  41. Lindahl E, Hess B, van der Spoel D (2001) J Mol Mod 7:306–317

    CAS  Google Scholar 

  42. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham T, Debolt S, Ferguson D, Seibel G, Kollman P (1995) Comput Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  43. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comp Chem 26:1781–1802

    Article  CAS  Google Scholar 

  44. Freddolino PL, Arkhipov AS, Larson SB, Mc Pherson A, Schulten K (2006) Structure 14:437–449

    Article  CAS  Google Scholar 

  45. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  46. Martyna GJ, Tobias DJ, Klein ML (1994) J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  47. Feller SE, Zhang YH, Pastor RW, Brooks BR (1995) J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  48. Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, Molnar F, Wriggers W, Schulten K (1998) Steered Molecular Dynamics. In: Deuflhard P, Hermans J, Leimkuhler B, Mark AE, Reich S, Skeel RD (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Vol 4. Springer, Berlin Heidelberg New York

    Google Scholar 

  49. Isralewitz B, Gao M, Schulten K (2001) Curr Op Struct Biol 11:224–230

    Article  CAS  Google Scholar 

  50. Torrie, Valleau (1977) J Comp Phys 23:187–199

    Article  Google Scholar 

  51. Yu J, Ha T, Schulten K (2006) Biophys J 91:2097–2114

    Article  CAS  Google Scholar 

  52. Åqvist J (1996) J Comp Chem 17:1587–1597

    Article  Google Scholar 

  53. Dillingham M, Wigley D, Webb M (2000) Biochemistry 39:205–212

    Article  CAS  Google Scholar 

  54. Kubo R (1966) Rep Progr Phys 29:255–284

    Article  CAS  Google Scholar 

  55. Howard J (2001) Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  56. Szabo A, Schulten K, Schulten Z (1980) J Chem Phys 72:4350–4357

    Article  CAS  Google Scholar 

  57. Nishizaka T, Oiwa K, Noji H, Kimura S, Muneyuki E, Yoshida M, Kinosita K Jr (2004) Nat Struct Mol Biol 11:142–148

    Article  CAS  Google Scholar 

  58. Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K Jr, Yoshida M (2003) Proc Natl Acad Sci USA 100:14731–14736

    Article  CAS  Google Scholar 

  59. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The molecular images in this paper were created with the molecular graphics program VMD [59]. This work is supported by grants from the National Institutes of Health PHS-5-P41-RR05969 and the National Science Foundation MCB02-34938. The authors gladly acknowledge supercomputer time provided by Pittsburgh Supercomputer Center and the National Center for Supercomputing Applications via National Resources Allocation Committee grant MCA93S028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Schulten .

Editor information

Markus Reiher

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dittrich, M., Yu, J., Schulten, K. (2006). PcrA Helicase, a Molecular Motor Studied from the Electronic to the Functional Level. In: Reiher, M. (eds) Atomistic Approaches in Modern Biology. Topics in Current Chemistry, vol 268. Springer, Berlin, Heidelberg . https://doi.org/10.1007/128_2006_086

Download citation

Publish with us

Policies and ethics