Skip to main content

Transfer of Parahydrogen-Induced Hyperpolarization to Heteronuclei

  • Chapter
  • First Online:
In situ NMR Methods in Catalysis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 276))

Abstract

Homogeneously catalyzed hydrogenation reactions of unsaturated substrates with H 2 gas mixtures enriched in parahydrogen yield strong NMR signal enhancements of the transferred 1H nuclei if the symmetry of H2 is broken in the resulting hydrogenated products. This chemically induced hyperpolarization phenomenon known as parahydrogen-induced polarization (PHIP) is a well-established polarization technique in NMR spectroscopy. Ever since its theoretical prediction and subsequent experimental verification the method has been used to increase signal intensity in 1H-NMR spectroscopy for the elucidation of catalytic pathways of hydrogenation reactions and their kinetic behavior. Furthermore, PHIP is not confined to the attached protons and 1H nuclei which are close to the hydrogenation site but it can also be transferred spontaneously to heteronuclei, which are present in the hydrogenation product. In this review we give an overview of the different experiments that have been performed in recent years in order to efficiently transfer PHIP-derived polarization to insensitive magnetically active nuclei following the catalyzed parahydrogenation of their unsaturated precursor molecules. A detailed description of the experiments dealing with every individual heteronucleus in particular is followed by a discussion of the mechanisms leading to PHIP transfer. Subsequently, we describe the existing set of pulse sequences that have been designed and successfully employed in order to induce an exchange of increased magnetization originating from PHIP between protons and heteronuclei using conventional coherence transfer schemes. Finally, possible applications of non-proton PHIP spectroscopy in medicine and clinical research are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

NMR:

nuclear magnetic resonance

PHIP:

parahydrogen-induced polarization

NOE:

nuclear Overhauser effect

ALTADENA:

adiabatic longitudinal transport after dissociation engenders nuclear alignment

PASADENA:

parahydrogen and synthesis allow dramatically enhanced nuclear alignment

MRS:

magnetic resonance spectroscopy

MRT:

magnetic resonance tomography

INEPT:

insensitive nuclei enhanced by polarization transfer

DEPT:

distortionless enhancement by polarization transfer

INADEQUATE:

incredible natural abundance double quantum transfer experiment

n.a.:

natural abundance

PART:

parahydrogen-aided resonance transfer

SE:

signal enhancement

SEPP:

selective excitation of polarization using PASADENA

CIDNP:

chemically induced dynamic nuclear polarization

TOCSY:

total correlation spectroscopy

FID:

free induction decay

SNR:

signal-to-noise ratio

References

  1. Bowers CR, Weitekamp DP (1986) Phys Rev Lett 57:2645

    Article  CAS  Google Scholar 

  2. Bowers CR, Weitekamp DP (1987) J Am Chem Soc 109:5541

    Article  CAS  Google Scholar 

  3. Eisenschmid TC, Kirss RU, Deutsch PP, Hommeltoft SI, Eisenberg R, Bargon J, Lawler RG, Balch AL (1987) J Am Chem Soc 109:8089

    Article  CAS  Google Scholar 

  4. Natterer J, Bargon J (1997) Prog NMR Spectrosc 31:293

    Article  Google Scholar 

  5. Duckett SB, Sleigh CJ (1999) Prog NMR Spectrosc 34:71

    Article  CAS  Google Scholar 

  6. Pravica MG, Weitekamp DP (1988) Chem Phys Lett 145:255

    Article  CAS  Google Scholar 

  7. Eisenschmid TC, McDonald J, Eisenberg R, Lawler RG (1989) J Am Chem Soc 111:7267

    Article  CAS  Google Scholar 

  8. Duckett SB, Newell CL, Eisenberg R (1993) J Am Chem Soc 115:1156

    Article  CAS  Google Scholar 

  9. Barkemeyer J, Haake M, Bargon J (1995) J Am Chem Soc 117:2927

    Article  CAS  Google Scholar 

  10. Haake M, Natterer J, Bargon J (1996) J Am Chem Soc 118:8688

    Article  CAS  Google Scholar 

  11. Barkemeyer J, Bargon J, Sengstschmid H, Freeman R (1996) J Magn Reson A 120:129

    Article  CAS  Google Scholar 

  12. Natterer J, Barkemeyer J, Bargon J (1996) J Magn Reson A 123:253

    Article  CAS  Google Scholar 

  13. Natter J (1997) PhD thesis, University of Bonn

    Google Scholar 

  14. Stephan M, Kohlmann O, Niessen HG, Eichhorn A, Bargon J (2002) Magn Reson Chem 40:157

    Article  CAS  Google Scholar 

  15. Kuhn LT, Bommerich U, Bargon J (2006) J Phys Chem A 110:3521

    Article  CAS  Google Scholar 

  16. Bargon J, Kandels J, Woelk K (1993) Z Phys Chem 180:65

    CAS  Google Scholar 

  17. Aime S, Canet D, Dastrù W, Gobetto R, Reineri F, Viale A (2001) J Phys Chem A 105:6305

    Article  CAS  Google Scholar 

  18. Hübler P, Bargon J (2000) Angew Chem Int Ed 39:3701

    Article  Google Scholar 

  19. Aime S, Gobetto R, Reineri F, Canet D (2003) J Chem Phys 119:8890

    Article  CAS  Google Scholar 

  20. Sørensen OW, Ernst RR (1983) J Magn Reson 51:477

    Google Scholar 

  21. Haake M, Barkemeyer J, Bargon J (1995) J Phys Chem 99:17539

    Article  CAS  Google Scholar 

  22. Giernoth R, Hübler P, Bargon J (1998) Angew Chem Int Ed Engl 37:2473

    Article  CAS  Google Scholar 

  23. Hübler P, Giernoth R, Kümmerle G, Bargon J (1999) J Am Chem Soc 121:5311

    Article  Google Scholar 

  24. Bommerich U (2005) PhD thesis, University of Bonn

    Google Scholar 

  25. Weitekamp DP, Bielecki A, Zax D, Zilm K, Pines A (1983) Phys Rev Lett 50:1807

    Article  CAS  Google Scholar 

  26. Zax DB, Bielecki A, Zilm KW, Pines A, Weitekamp DP (1985) J Chem Phys 83:4877

    Article  CAS  Google Scholar 

  27. Thayer AM, Pines A (1987) Acc Chem Res 20:47

    Article  CAS  Google Scholar 

  28. Natterer J, Schedletzky O, Barkemeyer J, Bargon J, Glaser SJ (1998) J Magn Reson 133:92

    Article  CAS  Google Scholar 

  29. Morris GA, Freeman R (1979) J Am Chem Soc 101:760

    Article  CAS  Google Scholar 

  30. Burum DP, Ernst RR (1980) J Magn Reson 39:163

    CAS  Google Scholar 

  31. Bax A, Freeman R, Kempsell SP (1980) J Am Chem Soc 102:4849

    Article  CAS  Google Scholar 

  32. Golman K, Olsson LE, Axelsson O, Månsson S, Karlsson M, Petersson JS (2003) Br J Radiol 76:S118

    Article  CAS  Google Scholar 

  33. Golman K, Axelsson O, Jóhanesson H, Månsson S, Olofsson C, Petersson JS (2001) Magn Reson Med 46:1

    Article  CAS  Google Scholar 

  34. Mansfield P, Maudsley AA (1977) J Magn Reson 27:101

    CAS  Google Scholar 

  35. Hennig J, Nauerth A, Friedburg H (1986) Magn Reson Med 3:823

    Article  CAS  Google Scholar 

  36. Jóhannesson H, Axlesson O, Karlsson M (2004) C R Physique 5:315

    Article  CAS  Google Scholar 

  37. Goldman M, Jóhannesson H, Axelsson O, Karlsson M (2005) Magn Reson Imag 23:153

    Article  CAS  Google Scholar 

  38. Goldman M, Jóhannesson H (2005) CR Physique 6:575

    Article  CAS  Google Scholar 

  39. Bhattacharya P, Harris K, Lin AP, Mansson M, Norton VA, Perman WH, Weitekamp DP, Ross B (2005) MAGMA 18:245

    Article  CAS  Google Scholar 

  40. Svensson J, Månsson S, Johansson E, Petersson JS, Olsson LE (2003) Magn Reson Med 50:256

    Article  Google Scholar 

  41. Aime S, Dastrù W, Gobetto R, Viale A (2005) Org Biomol Chem 3:3984

    Article  Google Scholar 

  42. Johansson E, Olsson LE, Månsson S, Petersson JS, Golman K, Ståhlberg F, Wirestam R (2004) Magn Reson Med 52:1043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr J. Keeler (Cambridge University, Cambridge, UK) for allowing us to reproduce Fig. 20. L.T.K. thanks the German National Academic Foundation (Studienstiftung des deutschen Volkes) for constant support and generous funding throughout his studies. Further financial support from the Deutsche Forschungsgemeinschaft (DFG) and the Theodor-Laymann-Stiftung (L.T.K.) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars T. Kuhn .

Editor information

Joachim Bargon Lars T. Kuhn

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhn, L.T., Bargon, J. (2006). Transfer of Parahydrogen-Induced Hyperpolarization to Heteronuclei. In: Bargon, J., Kuhn, L.T. (eds) In situ NMR Methods in Catalysis. Topics in Current Chemistry, vol 276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_064

Download citation

Publish with us

Policies and ethics