Skip to main content

Self-Organized Formation of Hierarchical Structures

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 270))

Abstract

Hierarchical architectures consisting of small building blocks of inorganic crystals are widely found in biominerals. Crystal growth mimicking biomineralization has been studied using various kinds of organic molecules and molecular assembly. The emergence of complex organization of inorganic crystals was observed through biomimetic approaches in aqueous solution. A wide variety of hierarchical architectures including fractals, dendrites, self-similar and helical structures were achieved in the artificial systems. Self-organized formation, with exquisite control of mass transport and the variation of surface energy with organic molecules, is essential for versatile morphogenesis of inorganic crystals similar to biominerals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mann S (1988) Nature 332:119

    CAS  Google Scholar 

  2. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York

    Google Scholar 

  3. Lowenstam H, Weiner AS (1989) On biomineralization. Oxford University Press, Oxford, England

    Google Scholar 

  4. Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Science 309:275

    CAS  Google Scholar 

  5. Sumper M, Brunner E (2006) Adv Funct Mater 16:17

    CAS  Google Scholar 

  6. Li X, Chang WC, Chao YJ, Wang R, Chang M (2004) Nano Lett 4:613

    CAS  Google Scholar 

  7. Takahashi K, Yamamoto H, Onoda A, Doi M, Inaba T, Chiba M, Kobayashi A, Taguchi T, Okamura T, Ueyama N (2004) Chem Commun, p 996

    Google Scholar 

  8. Sethmann I, Putnis A, Gransmann O, Löbmann P (2005) Am Mineral 90:1213

    CAS  Google Scholar 

  9. Sethmann I, Hinrichs R, Wörheide G, Putnis A (2006) J Inorg Biochem 100:88

    CAS  Google Scholar 

  10. Oaki Y, Imai H (2005) Angew Chem Int Ed 44:6571

    CAS  Google Scholar 

  11. Oaki Y, Imai H (2006) Small 2:66

    CAS  Google Scholar 

  12. Kato T, Sugawara A, Hosoda N (2002) Adv Mater 14:869

    CAS  Google Scholar 

  13. Kato T, Amamiya T (1999) Chem Lett 28:199

    Google Scholar 

  14. Kato T, Suzuki T, Irie T (2000) Chem Lett 29:186

    Google Scholar 

  15. Sugawara A, Kato T (2000) Chem Commun, p 487

    Google Scholar 

  16. Hosoda N, Kato T (2001) Chem Mater 13:688

    CAS  Google Scholar 

  17. Sugawara A, Ishii T, Kato T (2003) Angew Chem Int Ed 42:5299

    CAS  Google Scholar 

  18. Hosoda N, Sugawara A, Kato T (2003) Macromoecules 36:6449

    CAS  Google Scholar 

  19. Zhang S, Gonsalves KE (1998) Langmuir 14:6761

    CAS  Google Scholar 

  20. Heywood BR, Mann S (1992) J Am Chem Soc 114:4681

    CAS  Google Scholar 

  21. Xu G, Yao N, Aksay IA, Groves JT (1998) J Am Chem Soc 120:11977

    CAS  Google Scholar 

  22. Gower LB, Odom DJ (2000) J Cryst Growth 210:719

    CAS  Google Scholar 

  23. Cölfen H (2003) Curr Opin Colloid Interface Sci 8:23

    Google Scholar 

  24. Yu SH, Cölfen H (2004) J Mater Chem 14:2124

    CAS  Google Scholar 

  25. Cölfen H, Mann S (2003) Angew Chem Int Ed 42:2350

    Google Scholar 

  26. Mann S (2004) Chem Commun, p 1

    Google Scholar 

  27. Cölfen H, Antonietti M (2005) Angew Chem Int Ed 44:5576

    Google Scholar 

  28. Wohlrab S, Pinna N, Antonietti M, Cölfen H (2005) Chem Eur J 11:2903

    CAS  Google Scholar 

  29. Wang XT, Cölfen H, Antonietti M (2005) J Am Chem Soc 127:3246

    CAS  Google Scholar 

  30. Penn RL, Banfield JF (1998) Science 281:969

    CAS  Google Scholar 

  31. Penn RL, Banfield JF (1999) Geochim Cosmochim Acta 63:1549

    CAS  Google Scholar 

  32. Polleux J, Pinna N, Antonietti M, Niederberger M (2004) Adv Mater 16:436

    CAS  Google Scholar 

  33. Pacholski C, Kornowski A, Weller H (2002) Angew Chem Int Ed 41:1181

    Google Scholar 

  34. Liu B, Yu SH, Li L, Zhang F, Zhang Q, Yoshimura M, Shen P (2004) J Phys Chem B 108:2788

    CAS  Google Scholar 

  35. Niederberger M, Krumeich F, Hegetschweiler K, Nesper R (2002) Chem Mater 14:78

    CAS  Google Scholar 

  36. Schäffer TE, Ionescu-Zanetti C, Proksch R, Fritz M, Walters DA, Almqvist N, Zaremba CM, Belcher AM, Smith BL, Stucky GD, Morse DE, Hansma PK (1997) Chem Mater 9:731

    Google Scholar 

  37. Kondepudi DK, Prigogine I (1998) Modern thermodynamics – from heat engines to dissipative structures. Wiley, New York, p 427

    Google Scholar 

  38. Epstein IR, Pojman JA (1998) An introduction to nonlinear chemical dynamics – oscillations, waves, patterns, and chaos. Oxford University Press, Oxford, England

    Google Scholar 

  39. Ben-Jacob E, Garik P (1990) Nature 343:523

    Google Scholar 

  40. Saito Y, Ueta T (1989) Phys Rev A 40:3408

    Google Scholar 

  41. Oaki Y, Imai H (2003) Cryst Growth Des 3:711

    CAS  Google Scholar 

  42. Ní Mhíocháin TR, Coey JMD (2004) Phys Rev E 69:061404

    Google Scholar 

  43. Gránásy L, Pusztai T, Börzsönyi T, Warren JA, Douglas JF (2004) Nat Mater 3:645

    Google Scholar 

  44. Ma Y, Qi L, Ma J, Cheng H (2004) Cryst Growth Des 4:351

    CAS  Google Scholar 

  45. Chen X, Wang X, Wang Z, Yang X, Qian Y (2005) Cryst Growth Des 5:347

    CAS  Google Scholar 

  46. Lu Q, Gao F, Komarneni S (2004) J Am Chem Soc 126:54

    CAS  Google Scholar 

  47. Cao M, Liu T, Gao S, Sun G, Wu X, Hu C, Wang ZL (2005) Angew Chem Int Ed 44:4197

    CAS  Google Scholar 

  48. Yang D, Qi L, Ma J (2003) Chem Commun, p 1180

    Google Scholar 

  49. Nakanishi S, Fukami K, Sakai S, Nakato Y (2002) Chem Lett 31:636

    Google Scholar 

  50. Fukami K, Nakanishi S, Sakai S, Nakato Y (2003) Chem Lett 32:532

    CAS  Google Scholar 

  51. Fukami K, Nakanishi S, Tada T, Yamasaki H, Sakai S, Fukushima S, Nakato Y (2004) J Electrochem Soc 152:C493

    Google Scholar 

  52. Nakanishi S, Fukami K, Tada T, Nakato Y (2004) J Am Chem Soc 126:9556

    CAS  Google Scholar 

  53. Xu H, Keawwattana W, Kyua T (2005) J Chem Phys 123:124908

    Google Scholar 

  54. Kniep R, Busch S (1996) Angew Chem Int Ed Engl 35:2624

    CAS  Google Scholar 

  55. Busch S, Schwarz U, Kniep R (2001) Chem Mater 13:3260

    CAS  Google Scholar 

  56. Busch S, Schwarz U, Kniep R (2003) Adv Funct Mater 13:189

    CAS  Google Scholar 

  57. Yu SH, Cölfen H, Hartmann J, Antonietti M (2002) Adv Funct Mater 12:541

    CAS  Google Scholar 

  58. Yu SH, Cölfen H, Antonietti M (2003) J Phys Chem B 107:7396

    CAS  Google Scholar 

  59. Yu SH, Antonietti M, Cölfen H, Hartmann J (2003) Nano Lett 3:379

    CAS  Google Scholar 

  60. Tian ZR, Liu J, Voigt JA, Mckenzie B, Xu H (2003) Angew Chem Int Ed 42:414

    CAS  Google Scholar 

  61. Chang Y, Zeng HC (2004) Cryst Growth Des 4:273

    CAS  Google Scholar 

  62. Imai H, Terada T, Yamabi S (2003) Chem Commun, p 484

    Google Scholar 

  63. Lindsell WE, Preston PN, Seddon JM, Rosair GM, Woodman AJ (2000) Chem Mater 12:1572

    CAS  Google Scholar 

  64. Yang W, Chai X, Chi L, Liu X, Cao Y, Lu R, Jiang Y, Tang X, Fuchs H, Li T (1999) Chem Eur J 5:1144

    CAS  Google Scholar 

  65. Liu J, Zhang F, He T (2001) Macromol Rapid Commun 22:1340

    CAS  Google Scholar 

  66. Barteczak Z, Argon AS, Cohen RE, Kowalewski T (1999) Polymer 40:2367

    Google Scholar 

  67. Li M, Mann S (2000) Langmuir 16:7088

    CAS  Google Scholar 

  68. Hopwood JD, Mann S (1997) Chem Mater 9:819

    Google Scholar 

  69. Gower LA, Tirrell DA (1998) J Cryst Growth 191:153

    CAS  Google Scholar 

  70. García-Ruiz JM (1985) J Cryst Growth 73:251

    Google Scholar 

  71. García-Ruiz JM, Hyde ST, Carnerup AM, Christy AG, Van Kranendonk MJ, Welham NJ (2003) Science 302:1194

    Google Scholar 

  72. Terada T, Yamabi S, Imai H (2003) J Cryst Growth 253:435

    CAS  Google Scholar 

  73. Yu SH, Cölfen H, Tauer K, Antonietti M (2005) Nat Mater 4:51

    CAS  Google Scholar 

  74. Suda J, Matsushita M (1995) J Phys Soc Jpn 64:348

    CAS  Google Scholar 

  75. Suda J, Matsushita M, Izumi K (2000) J Phys Soc Jpn 69:124

    CAS  Google Scholar 

  76. Suda J, Nakayama T, Matsushita M (1998) J Phys Soc Jpn 67:2981

    CAS  Google Scholar 

  77. Suda J, Matsushita M (2004) J Phys Soc Jpn 73:300

    CAS  Google Scholar 

  78. Giraldo O, Brock SL, Marquez M, Suib SL, Hillhouse H, Tsapatsis M (2000) Nature 405:38

    CAS  Google Scholar 

  79. Wang ZL, Kong XY, Ding Y, Gao P, Hughes WL, Yang R, Zhang Y (2004) Adv Funct Mater 14:943

    CAS  Google Scholar 

  80. Kong XY, Wang ZL (2003) Nano Lett 3:1625

    CAS  Google Scholar 

  81. Yang SM, Sokolov I, Coombs N, Kresge CT, Ozin GA (1999) Adv Mater 11:1427

    CAS  Google Scholar 

  82. Kim WJ, Yang SM (2001) Adv Mater 13:1191

    CAS  Google Scholar 

  83. Imai H, Oaki Y (2004) Angew Chem Int Ed 43:1363

    CAS  Google Scholar 

  84. Oaki Y, Imai H (2005) Langmuir 21:863

    CAS  Google Scholar 

  85. Oaki Y, Imai H (2004) J Am Chem Soc 126:9271

    CAS  Google Scholar 

  86. Estroff LA, Incarvito CD, Hamilton AD (2004) J Am Chem Soc 126:2

    CAS  Google Scholar 

  87. Park RJ, Meldrum FC (2002) Adv Mater 14:1167

    CAS  Google Scholar 

  88. Aizenberg J, Muller DA, Grazul JL, Hamann DR (2003) Science 299:1205

    CAS  Google Scholar 

  89. Ha YH, Vaia RA, Lynn WF, Costantino JP, Shin J, Smith AB, Matsudaira PT, Thomas EL (2004) Adv Mater 16:1091

    CAS  Google Scholar 

  90. Grassmann O, Müller G, Löbmann P (2002) Chem Mater 14:4530

    CAS  Google Scholar 

  91. Zhan J, Lin HP, Mou CY (2003) Adv Mater 15:621

    CAS  Google Scholar 

  92. MacKenzie CR, Wilbanks SM, McGrath KM (2004) J Mater Chem 14:1238

    CAS  Google Scholar 

  93. Rautaray D, Sainkar SR, Sastry M (2003) Langmuir 19:10095

    CAS  Google Scholar 

  94. Chen SF, Yu SH, Wang TX, Jiang J, Cölfen H, Hu B, Yu B (2005) Adv Mater 17:1461

    CAS  Google Scholar 

  95. Sugawara A, Ishii T, Kato T (2003) Angew Chem Int Ed 42:5299

    CAS  Google Scholar 

  96. Gehrke N, Cölfen H, Pinna N, Antonietti M, Nassif N (2005) Cryst Growth Des 5:1317

    CAS  Google Scholar 

  97. Kotachi A, Miura T, Imai H (2004) Chem Mater 16:3191

    CAS  Google Scholar 

  98. Kotachi A, Miura T, Imai H (2006) Chem Lett 35:204

    CAS  Google Scholar 

  99. Mukkamala SB, Powell AK (2004) Chem Commun, p 918

    Google Scholar 

  100. Rudloff J, Cölfen H (2004) Langmuir 20:991

    CAS  Google Scholar 

  101. Volodkin DV, Petrov AI, Prevot M, Sukhorukov GB (2004) Langmuir 20:3398

    CAS  Google Scholar 

  102. Yu SH, Cölfen H, Xu AW, Dong W (2004) Cryst Growth Des 4:33

    CAS  Google Scholar 

  103. Imai H, Terada T, Miura T, Yamabi S (2002) J Cryst Growth 244:200

    CAS  Google Scholar 

  104. Miura T, Kotachi A, Oaki Y, Imai H (2006) Cryst Growth Des 6:612

    CAS  Google Scholar 

  105. Qi L, Cölfen H, Antonietti M, Li M, Hopwood JD, Ashley AJ, Mann S (2001) Chem Eur J 7:3526

    CAS  Google Scholar 

  106. Qi L, Cölfen H, Antonietti M (2000) Angew Chem Int Ed 39:604

    CAS  Google Scholar 

  107. Qi L, Cölfen H, Antonietti M (2000) Chem Mater 12:2392

    CAS  Google Scholar 

  108. Cölfen H, Qi L, Mastai Y, Börger L (2002) Cryst Growth Des 2:191

    Google Scholar 

  109. Yu SH, Cölfen H, Antonietti M (2002) Chem Eur J 8:2937

    CAS  Google Scholar 

  110. Song J, Saiz E, Bertozzi CR (2003) J Am Chem Soc 125:1236

    CAS  Google Scholar 

  111. Zhang W, Liao SS, Cui FZ (2003) Chem Mater 15:3221

    CAS  Google Scholar 

  112. Furuichi K, Oaki Y, Imai H (2006) Chem Mater 18:229

    CAS  Google Scholar 

  113. Oaki Y, Imai H (2005) Adv Funct Mater 15:1407

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Imai .

Editor information

Kensuke Naka

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Imai, H. (2006). Self-Organized Formation of Hierarchical Structures. In: Naka, K. (eds) Biomineralization I. Topics in Current Chemistry, vol 270. Springer, Berlin, Heidelberg . https://doi.org/10.1007/128_054

Download citation

Publish with us

Policies and ethics