Advertisement

Cp2TiCl in Natural Product Synthesis

  • Juan M. Cuerva
  • José Justicia
  • Juan L. Oller-López
  • J. Enrique OltraEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 264)

Abstract

The synthesis of complex natural products constitutes one of the most exigent tests to prove the usefulness of a new reagent or catalyst. During the past 10 years, methods based on the Cp2TiCl -promoted and/or -catalyzed radical epoxide opening have been used by several authors as the key step for the synthesis of more than 50 natural products and advanced synthons. At first, owing to its selectivity and the extremely mild experimental conditions employed, stoichiometric Cp2TiCl was chosen for deoxygenation and reductive epoxide opening on densely functionalized substrates, but during the last 5 years catalytic Cp2TiCl has been increasingly employed to achieve radical cyclizations of different epoxyalkenes and epoxyalkynes, affording straightforward strategies for the synthesis of complex natural products. In these fields Cp2TiCl -based methods have already largely proved their synthetic usefulness but other Cp2TiCl-mediated reactions have as yet been scarcely applied. This review focuses on the increasing scope of applications that employ the Cp2TiCl -mediated procedures in the synthesis of natural products. We also present the basic concepts of these methods to facilitate and encourage further synthetic applications.

Natural products Radicals Synthesis Titanocene 

Abbreviations

col

2,4,6-Collidine

Cp

Cyclopentadienyl

DMP

Dess–Martin periodinane

m-CPBA

3-Chloroperbenzoic acid

min

Minutes

Py

Pyridine

THF

Tetrahydrofuran

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to the “Junta de Andalucia” for the financial support to our research group (FQM339), including the project from the “Consejería de la Presidencia” (AM43/04). J.J. thanks the University of Granada and J.L.O.-L. the Spanish Ministry of Education and Science for their grants.

References

  1. 1.
    Nicolaou KC, Vourloumis D, Winssinger N, Baran PS (2000) Angew Chem Int Ed 39:45 Google Scholar
  2. 2.
    Enemærke RJ, Hjøllund GH, Daasbjerg K, Skrydstrup T (2001) CR Acad Sci 4:435 Google Scholar
  3. 3.
    Dunlap MS, Nicholas KM (2001) J Organomet Chem 630:125 CrossRefGoogle Scholar
  4. 4.
    Enemærke RJ, Larsen J, Skrydstrup T, Daasbjerg K (2004) J Am Chem Soc 126:7853 Google Scholar
  5. 5.
    Sekutowski D, Jungst R, Stucky GD (1978) Inorg Chem 17:1848 CrossRefGoogle Scholar
  6. 6.
    Stephan DW (1992) Organometallics 11:996 CrossRefGoogle Scholar
  7. 7.
    Nugent WA, RajanBabu TV (1988) J Am Chem Soc 110:8561 CrossRefGoogle Scholar
  8. 8.
    Gansäuer A, Pierobon M, Bluhm H (1998) Angew Chem Int Ed 37:101 CrossRefGoogle Scholar
  9. 9.
    Gansäuer A, Bluhm H, Pierobon M (1998) J Am Chem Soc 120:12849 Google Scholar
  10. 10.
    Gansäuer A, Bluhm H (2000) Chem Rev 100:2771 Google Scholar
  11. 11.
    Gansäuer A, Pierobon M (2001) Rearrangements of cyclopropanes and epoxides. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis, vol 2. Wiley, Weinheim, p 207 Google Scholar
  12. 12.
    Gansäuer A, Rinker B (2002) Tetrahedron 58:7017 Google Scholar
  13. 13.
    Gansäuer A, Narayan S (2002) Adv Synth Catal 344:465 Google Scholar
  14. 14.
    Gansäuer A, Rinker B (2002) Titanocene-catalyzed epoxide opening. In: Marek I (ed) Titanium and zirconium in organic synthesis. Wiley, Weinheim, p 435 Google Scholar
  15. 15.
    Gansäuer A, Lauterbach T, Narayan S (2003) Angew Chem Int Ed 42:5556 Google Scholar
  16. 16.
    Larock RC (1999) Comprehensive organic transformations, 2nd edn. Wiley, New York Google Scholar
  17. 17.
    Smith MB (2002) Organic synthesis, 2nd edn. McGraw-Hill, New York Google Scholar
  18. 18.
    Rickborn B (1991) Acid-catalyzed rearrangements of epoxides. In: Trost BM, Fleming I, Pattenden G (eds) Comprehensive organic synthesis, vol 3. Pergamon, Oxford, p 733 Google Scholar
  19. 19.
    Mitsunobu O (1991) Synthesis of alcohols and ethers. In: Trost BM, Fleming I, Winterfeldt E (eds) Comprehensive organic synthesis, vol 6. Pergamon, Oxford, p 1 Google Scholar
  20. 20.
    RajanBabu TV, Nugent WA (1989) J Am Chem Soc 111:4525 Google Scholar
  21. 21.
    RajanBabu TV, Nugent WA, Beattie MS (1990) J Am Chem Soc 112:6408 CrossRefGoogle Scholar
  22. 22.
    RajanBabu TV, Nugent WA (1994) J Am Chem Soc 116:986 Google Scholar
  23. 23.
    Murai S, Murai T, Kato S (1991) Reduction of epoxides. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 8. Pergamon, Oxford, p 871 Google Scholar
  24. 24.
    Schobert R (1988) Angew Chem Int Ed 27:855 Google Scholar
  25. 25.
    Yadav JS, Shekaram T, Gadgil VR (1990) Chem Commun 843 Google Scholar
  26. 26.
    Rao AVR, Bhanu MN, Sherma GVM (1993) Tetrahedron Lett 34:707 Google Scholar
  27. 27.
    Yadav S, Srinivas D, Shekaram T (1994) Tetrahedron Lett 35:3625 Google Scholar
  28. 28.
    Chakraborty TK, Dutta S (1997) J Chem Soc Perkin Trans 1 1257 Google Scholar
  29. 29.
    Weigand S, Brückner R (1997) Synlett 225 Google Scholar
  30. 30.
    Chakraborty TK, Dutta S (1998) Tetrahedron Lett 39:101 Google Scholar
  31. 31.
    Jørgensen KB, Suenaga T, Nakata T (1999) Tetrahedron Lett 40:8855 Google Scholar
  32. 32.
    Hardouin C, Chevallier F, Rousseau B, Doris E (2001) J Org Chem 66:1046 Google Scholar
  33. 33.
    Chakraborty TK, Das S, Raju TV (2001) J Org Chem 66:4091 CrossRefGoogle Scholar
  34. 34.
    Chakraborty TK, Tapadar S (2001) Tetrahedron Lett 42:1375 Google Scholar
  35. 35.
    Chakraborty TK, Das S (2002) Tetrahedron Lett 43:2313 Google Scholar
  36. 36.
    Chakraborty TK, Tapadar S (2003) Tetrahedron Lett 44:2541 Google Scholar
  37. 37.
    Bermejo F, Sandoval C (2004) J Org Chem 69:5275 CrossRefGoogle Scholar
  38. 38.
    Fernández-Mateos A, Martín de la Nava E, Pascual Coca G, Ramos Silvo A, Rubio González R (1999) Org Lett 1:607 Google Scholar
  39. 39.
    Fernández-Mateos A, Mateos Burón I, Rabanedo Clemente R, Ramos Silvo AI, Rubio González R (2004) Synlett 1011 Google Scholar
  40. 40.
    Merlic CA, Xu D (1991) J Am Chem Soc 113:9855 Google Scholar
  41. 41.
    Merlic CA, Xu D, Nguyen MC, Truong V (1993) Tetrahedron Lett 34:227 Google Scholar
  42. 42.
    Dötz KH, Gomes da Silva E (2000) Tetrahedron 56:8291 CrossRefGoogle Scholar
  43. 43.
    Parrish JD, Little RD (2002) Org Lett 4:1439 CrossRefGoogle Scholar
  44. 44.
    Gansäuer A, Lauterbach T, Geich-Gimbel D (2004) Chem Eur J 10:4983 CrossRefGoogle Scholar
  45. 45.
    Fernández-Mateos A, Mateos Burón L, Martín de la Nava EM, Rabanedo Clemente R, Rubio González R, Sanz González F (2004) Synlett 2553 Google Scholar
  46. 46.
    Friedrich J, Dolg M, Gansäuer A, Geich-Gimbel D, Lauterbach T (2005) J Am Chem Soc 127:7071 CrossRefGoogle Scholar
  47. 47.
    Barrero AF, Oltra JE, Cuerva JM, Rosales A (2002) J Org Chem 67:2566 Google Scholar
  48. 48.
    Curran DP, Porter NA, Giese B (1996) Stereochemistry of radical reactions. Wiley, Weinheim Google Scholar
  49. 49.
    Renaud P, Sibi MP (eds) (2001) Radicals in organic synthesis. Wiley, Weinheim Google Scholar
  50. 50.
    Spiegel DA, Wiberg KB, Schacherer LN, Medeiros MR, Wood JL (2005) J Am Chem Soc 127:12513 CrossRefGoogle Scholar
  51. 51.
    Barrero AF, Rosales A, Cuerva JM, Gansäuer A, Oltra JE (2003) Tetrahedron Lett 44:1079 CrossRefGoogle Scholar
  52. 52.
    Oller-López JL, Campaña AG, Cuerva JM, Oltra JE (2005) Synthesis 2619 Google Scholar
  53. 53.
    Justicia J, Rosales A, Buñuel E, Oller-López JL, Valdivia M, Haïdour A, Oltra JE, Barrero AF, Cárdenas DJ, Cuerva JM (2004) Chem Eur J 10:1778 CrossRefGoogle Scholar
  54. 54.
    Barrero AF, Cuerva JM, Herrador MM, Valdivia MV (2001) J Org Chem 66:4074 CrossRefGoogle Scholar
  55. 55.
    Leca D, Fensterbank L, Lacôte E, Malacria M (2004) Angew Chem Int Ed 43:4220 CrossRefGoogle Scholar
  56. 56.
    Leca D, Song K, Albert M, Grangeio Gonçalves M, Fensterbank L, Lacôte E, Malacria M (2005) Synthesis 1405 Google Scholar
  57. 57.
    Gansäuer A, Bluhm H (1998) Chem Commun 2143 Google Scholar
  58. 58.
    Gansäuer A, Lauterbach T, Bluhm H, Noltemeyer M (1999) Angew Chem Int Ed 38:2909 CrossRefGoogle Scholar
  59. 59.
    Gansäuer A, Bluhm H, Lauterbach T (2001) Adv Synth Catal 343:785 CrossRefGoogle Scholar
  60. 60.
    Gansäuer A, Bluhm H, Rinker B, Narayan S, Schick M, Lauterbach T, Pierobon M (2003) Chem Eur J 9:531 CrossRefGoogle Scholar
  61. 61.
    Gansäuer A, Barchuk A, Fielenbach D (2004) Synthesis 2567 Google Scholar
  62. 62.
    Gansäuer A, Rinker B, Barchuk A, Nieger M (2004) Organometallics 23:1168 Google Scholar
  63. 63.
    Gansäuer A, Pierobon M (2000) Synlett 1357 Google Scholar
  64. 64.
    Gansäuer A, Pierobon M, Bluhm H (2001) Synthesis 2500 Google Scholar
  65. 65.
    Gansäuer A, Pierobon M, Bluhm H (2002) Angew Chem Int Ed 41:3206 CrossRefGoogle Scholar
  66. 66.
    Gansäuer A, Rinker B, Pierobon M, Grimme S, Gerenkamp M, Mück-Lichtenfeld C (2003) Angew Chem Int Ed 42:3687 Google Scholar
  67. 67.
    Gansäuer A, Rinker B, Ndene-Schiffer N, Pierobon M, Grimme S, Gerenkamp M, Mück-Lichtenfeld C (2004) Eur J Org Chem 2337 Google Scholar
  68. 68.
    Barrero AF, Rosales A, Cuerva JM, Oltra JE (2003) Org Lett 5:1935 CrossRefGoogle Scholar
  69. 69.
    Justicia J, Oller-López JL, Campaña AG, Oltra JE, Cuerva JM, Buñuel E, Cárdenas DJ (2005) J Am Chem Soc 127:14911 CrossRefGoogle Scholar
  70. 70.
    Fuse S, Hanochi M, Doi T, Takahashi T (2004) Tetrahedron Lett 45:1961 CrossRefGoogle Scholar
  71. 71.
    Handa Y, Inanaga J (1987) Tetrahedron Lett 28:5717 CrossRefGoogle Scholar
  72. 72.
    Enemærke RJ, Larsen J, Hjøllund GH, Skrydstrup T, Daasbjerg K (2005) Organometallics 24:1252 Google Scholar
  73. 73.
    Gansäuer A (1997) Chem Commun 457 Google Scholar
  74. 74.
    Gansäuer A, Bauer D (1998) J Org Chem 63:2070 Google Scholar
  75. 75.
    Hirao T, Hatano B, Asahara M, Muguruma Y, Ogawa A (1998) Tetrahedron Lett 39:5247 Google Scholar
  76. 76.
    Barden MC, Schwartz J (1996) J Am Chem Soc 118:5484 CrossRefGoogle Scholar
  77. 77.
    Moisan L, Hardouin C, Rousseau B, Doris E (2002) Tetrahedron Lett 43:2013 CrossRefGoogle Scholar
  78. 78.
    Parrish JD, Shelton DR, Little RD (2003) Org Lett 5:3615 Google Scholar
  79. 79.
    Jana S, Guin C, Roy SC (2004) Tetrahedron Lett 45:6575 CrossRefGoogle Scholar
  80. 80.
    Rosales A, Oller-López JL, Justicia J, Gansäuer A, Oltra JE, Cuerva JM (2004) Chem Commun 2628 Google Scholar
  81. 81.
    Mandal SK, Jana S, Roy SC (2005) Tetrahedron Lett 46:6115 Google Scholar
  82. 82.
    Barrero AF, Herrador MM, Quílez del Moral JF, Arteaga P, Arteaga JF, Piedra M, Sánchez E (2005) Org Lett 7:2301 CrossRefGoogle Scholar
  83. 83.
    Zhou L, Hirao T (2003) J Org Chem 68:1633 Google Scholar
  84. 84.
    Jana S, Guin C, Roy SC (2005) Tetrahedron Lett 46:1155 CrossRefGoogle Scholar
  85. 85.
    Spencer RP, Schwartz J (2000) Tetrahedron 56:2103 CrossRefGoogle Scholar
  86. 86.
    Hansen T, Daasbjerg K, Skrydstrup T (2000) 41:8645 Google Scholar
  87. 87.
    Samuel E, Vedel J (1989) Organometallics 8:237 CrossRefGoogle Scholar
  88. 88.
    Martre AM, Mousset G, Danciu V, Cosoveanu V (1998) Electrochim Acta 43:3217 CrossRefGoogle Scholar
  89. 89.
    Meunier-Prest R, Lamblin G, Mailfert A, Raveau S (2003) J Electroanal Chem 541:175 CrossRefGoogle Scholar
  90. 90.
    Hersant G, Ferjani MBS, Bennet SM (2004) Tetrahedron Lett 45:8123 CrossRefGoogle Scholar
  91. 91.
    Golakoti T, Ogino J, Heltzel CE, Husebo TL, Jensen CM, Larsen LK, Patterson GML, Moore RE, Mooberry SL, Corbett TH, Valeriote FA (1995) J Am Chem Soc 117:12030 CrossRefGoogle Scholar
  92. 92.
    Hardouin C, Doris E, Rousseau B, Mioskowski C (2002) Org Lett 4:1151 CrossRefGoogle Scholar
  93. 93.
    Hardouin C, Doris E, Rousseau B, Mioskowski C (2002) J Org Chem 67:6571 CrossRefGoogle Scholar
  94. 94.
    Bhaskar KV, Mander LN (1996) Tetrahedron Lett 37:719 CrossRefGoogle Scholar
  95. 95.
    Clive DLJ, Magnuson SR (1995) Tetrahedron Lett 36:15 CrossRefGoogle Scholar
  96. 96.
    Clive DLJ, Magnuson SR, Manning HW, Mayhew DL (1996) J Org Chem 61:2095 Google Scholar
  97. 97.
    Maiti G, Roy SC (1996) J Chem Soc Perkin Trans 1 403 Google Scholar
  98. 98.
    Mandal PK, Maiti G, Roy SC (1998) J Org Chem 63:2829 Google Scholar
  99. 99.
    Ziegler FE, Sarpong MA (2003) Tetrahedron 59:9013 CrossRefGoogle Scholar
  100. 100.
    Mandal PK, Roy SC (1999) Tetrahedron 55:11395 CrossRefGoogle Scholar
  101. 101.
    Rana KK, Guin C, Roy SC (2000) Tetrahedron Lett 41:9337 Google Scholar
  102. 102.
    Rana KK, Guin C, Roy SC (2001) Synlett 1249 Google Scholar
  103. 103.
    Roy SC, Rana KK, Guin C (2002) J Org Chem 67:3242 CrossRefGoogle Scholar
  104. 104.
    Banerjee B, Roy SC (2005) Synthesis 2913 Google Scholar
  105. 105.
    Nakai K, Kamoshita M, Doi T, Yamada H, Takahashi T (2001) Tetrahedron Lett 42:7855 Google Scholar
  106. 106.
    Barrero AF, Cuerva JM, Alvarez-Manzaneda EJ, Oltra JE, Chahboun R (2002) Tetrahedron Lett 43:2793 CrossRefGoogle Scholar
  107. 107.
    Barrero AF, Alvarez-Manzaneda EJ, Alvarez-Manzaneda R (1989) Tetrahedron Lett 30:3351 Google Scholar
  108. 108.
    Hoshino T, Shimizu K, Sato T (2004) Angew Chem Int Ed 43:6700 CrossRefGoogle Scholar
  109. 109.
    Trost BM, Shen HC, Surivet JP (2003) Angew Chem Int Ed 42:3943 Google Scholar
  110. 110.
    Ruano G, Grande M, Anaya J (2002) J Org Chem 67:8243 CrossRefGoogle Scholar
  111. 111.
    Anaya J, Fernández-Mateos A, Grande M, Martiáñez J, Ruano G, Rubio-Gonzalez MR (2003) Tetrahedron 59:241 CrossRefGoogle Scholar
  112. 112.
    Ruano G, Martiáñez J, Grande M, Anaya J (2003) J Org Chem 68:2024 CrossRefGoogle Scholar
  113. 113.
    Haruo Y, Hasegawa T, Tanaka H, Takahashi T (2001) Synlett 1935 Google Scholar
  114. 114.
    Rosales A, Estévez R, Cuerva JM, Oltra JE (2005) Angew Chem Int Ed 44:319 CrossRefGoogle Scholar
  115. 115.
    Barrero AF, Oltra JE, Álvarez M (1998) Tetrahedron Lett 39:1401 Google Scholar
  116. 116.
    Connolly JD, Hill RA (1991) Dictionary of terpenoids, vol 1. Chapman and Hall, London Google Scholar
  117. 117.
    Fraga BM (2003) Nat Prod Rep 20:392 CrossRefGoogle Scholar
  118. 118.
    Justicia J, Oltra JE, Barrero AF, Guadaño A, González-Coloma A, Cuerva JM (2005) Eur J Org Chem 712 Google Scholar
  119. 119.
    Justicia J, Oltra JE, Cuerva JM (2004) Tetrahedron Lett 45:4293 CrossRefGoogle Scholar
  120. 120.
    Justicia J, Oltra JE, Cuerva JM (2005) J Org Chem 70:8265 CrossRefGoogle Scholar
  121. 121.
    Simpson T (1998) Top Curr Chem 195:1 Google Scholar
  122. 122.
    Justicia J, Oltra JE, Cuerva JM (2004) J Org Chem 69:5803 CrossRefGoogle Scholar
  123. 123.
    González AG, Martín JD, Rodríguez ML (1973) Tetrahedron Lett 14:3657 Google Scholar
  124. 124.
    González AG, Martín JD, Rodríguez ML (1976) An Quim 72:1004 Google Scholar
  125. 125.
    Gansäuer A, Justicia J, Rosales A, Rinker B (2005) Synlett 1954 Google Scholar
  126. 126.
    Xing X, Demuth M (1999) Synlett 987 Google Scholar
  127. 127.
    Xing X, Demuth M (2001) Eur J Org Chem 537 Google Scholar
  128. 128.
    Trost BM (1991) Science 254:1471 Google Scholar
  129. 129.
    Trost BM (1995) Angew Chem Int Ed 34:259 Google Scholar
  130. 130.
    Abe I, Rohmer M, Prestwich GD (1993) Chem Rev 93:2189 CrossRefGoogle Scholar
  131. 131.
    Wendt KU, Schulz GE, Corey EJ, Liu DR (2000) Angew Chem Int Ed 39:2812 Google Scholar
  132. 132.
    Hoshino T, Sato T (2002) Chem Commun 291 Google Scholar
  133. 133.
    Goldsmith DJ (1962) J Am Chem Soc 84:3913 CrossRefGoogle Scholar
  134. 134.
    van Tamelen EE (1975) Acc Chem Res 8:152 Google Scholar
  135. 135.
    Taylor SK (1992) Org Prep Proc Int 24:247 CrossRefGoogle Scholar
  136. 136.
    Dennison ST, Harrowven DC (1996) J Chem Ed 73:697 CrossRefGoogle Scholar
  137. 137.
    Huang AX, Xiong Z, Corey EJ (1999) J Am Chem Soc 121:9999 Google Scholar
  138. 138.
    Marson CM (2000) Tetrahedron 56:8779 CrossRefGoogle Scholar
  139. 139.
    Zhang J, Corey EJ (2001) Org Lett 3:3215 Google Scholar
  140. 140.
    Yuan M, Schreiber JV, Corey EJ (2002) J Am Chem Soc 124:11290 Google Scholar
  141. 141.
    van Tamelen EE, Willet J, Schwartz M, Nadeau R (1966) J Am Chem Soc 88:5937 Google Scholar
  142. 142.
    Sharpless KB, van Tamelen EE (1969) J Am Chem Soc 91:1848 Google Scholar
  143. 143.
    Eliel EL, Wilen SH, Doyle MP (2001) Basic organic stereochemistry. Wiley-Interscience, New York Google Scholar
  144. 144.
    Naya Y, Kotake M (1968) Tetrahedron Lett 9:1645 Google Scholar
  145. 145.
    Warmers U, König WA (1999) Phytochemistry 52:99 Google Scholar
  146. 146.
    Cool LG (2001) Phytochemistry 58:969 CrossRefGoogle Scholar
  147. 147.
    Salomon CE, Magarvey NA, Sherman DV (2004) Nat Prod Rep 21:105 CrossRefGoogle Scholar
  148. 148.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2004) Nat Prod Rep 21:1 CrossRefGoogle Scholar
  149. 149.
    Rudi A, Kashman Y (1992) J Nat Prod 55:1408 CrossRefGoogle Scholar
  150. 150.
    Kuniyoshi M, Marma MS, Higa T, Bernardinelli G, Jefford CW (2000) Chem Commun 1155 Google Scholar
  151. 151.
    Kuniyoshi M, Marma MS, Higa T, Bernardinelli G, Jefford CW (2001) J Nat Prod 64:696 CrossRefGoogle Scholar
  152. 152.
    Su JY, Zhong YL, Zeng LM, Wu HM, Ma K (1995) Phytochemistry 40:195 CrossRefGoogle Scholar
  153. 153.
    Urones JG, Marcos IS, Basabe P, Alonso CA, Diez D, Garrido NM, Oliva IM, Rodilla JS, Slawin AMZ, Williams DJ (1990) Tetrahedron Lett 31:4501 Google Scholar
  154. 154.
    Urones JG, Marcos IS, Basabe P, Alonso C, Oliva IM, Garrido NM, Martín DD, Lithgow AM (1993) Tetrahedron 49:4051 Google Scholar

Authors and Affiliations

  • Juan M. Cuerva
    • 1
  • José Justicia
    • 1
  • Juan L. Oller-López
    • 1
  • J. Enrique Oltra
    • 1
    Email author
  1. 1.Department of Organic Chemistry, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations