Advertisement

Modification of Amino Acids, Peptides, and Carbohydrates through Radical Chemistry

  • Signe Grann Hansen
  • Troels SkrydstrupEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 264)

Abstract

This review provides an overview of some of the more recent work directed to exploit radical-based chemistry for the modification of some of Natures most important biomolecules, such as amino acids, peptides, and carbohydrates. Radical reactions are particularly advantageous for carrying out a variety of structural modifications on biomolecules as the reaction conditions are typically compatible with a wide variety of functional groups and solvents. An array of effective synthetic transformations will be discussed including selective side chain and backbone modifications of amino acids and peptides, along with methods for the transformation of carbohydrate substituents, as well as fragmentation and cyclizations reactions for the preparation of either structurally modified carbohydrates or chiral building blocks.

Amino acids Carbohydrates Peptides Radical reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Easton CJ (1997) Chem Rev 97:53 CrossRefGoogle Scholar
  2. 2.
    Giese B, Wettstein P, Stähelin C, Barbosa F, Neuburger M, Zehnder M, Wessig P (1999) Angew Chem Int Ed 38:2586 Google Scholar
  3. 3.
    Fuji K, Fuji K, Kawabata T (1998) Chem Eur J 4:373 CrossRefGoogle Scholar
  4. 4.
    Sinicropi A, Barbosa F, Basosi R, Giese B, Olivucci M (2005) Angew Chem 117:2442 CrossRefGoogle Scholar
  5. 5.
    Jonas M, Blechert S, Steckhan E (2001) J Org Chem 66:6896 CrossRefGoogle Scholar
  6. 6.
    Zhang X, Yeh SR, Hong S, Freccero M, Albini A, Falvey DE, Mariano PS (1994) J Am Chem Soc 116:4211 Google Scholar
  7. 7.
    Yoon UC, Jin YX, Oh SW, Park CH, Park JH, Campana CF, Cai X, Cuesler EN, Mariano PS (2003) J Am Chem Soc 125:10664 Google Scholar
  8. 8.
    Balraju V, Reddy DS, Periasamy M, Iqbal J (2005) Tetrahedron Lett 46:5207 CrossRefGoogle Scholar
  9. 9.
    Andrukiewicz R, Loska R, Prisyahnyuk V, Stalinski K (2003) J Org Chem 68:1552 CrossRefGoogle Scholar
  10. 10.
    Stork G, Sher PM (1986) J Am Chem Soc 108:303 Google Scholar
  11. 11.
    Ricci M, Blakskjær P, Skrydstrup T (2000) J Am Chem Soc 122:12413 CrossRefGoogle Scholar
  12. 12.
    Blakskjær P, Gavrila A, Andersen L, Skrydstrup T (2004) Tetrahedron Lett 45:9091 Google Scholar
  13. 13.
    Jacobsen MF, Turks M, Hazell R, Skrydstrup T (2002) J Org Chem 67:2411 CrossRefGoogle Scholar
  14. 14.
    Zard SZ (1997) Angew Chem Int Ed Engl 36:672 CrossRefGoogle Scholar
  15. 15.
    Blakskjær P, Pedersen L, Skrydstrup T (2001) J Chem Soc Perkin Trans I 910 Google Scholar
  16. 16.
    Liard A, Quiclet-Sire B, Zard SZ (1996) Tetrahedron Lett 37:5877 CrossRefGoogle Scholar
  17. 17.
    Quiclet-Sire B, Seguin S, Zard SZ (1998) Angew Chem Int Ed Engl 37:2864 CrossRefGoogle Scholar
  18. 18.
    Blakskjær P, Høj B, Riber D, Skrydstrup T (2003) J Am Chem Soc 125:4030 Google Scholar
  19. 19.
    Stojanovic A, Renaud P (1997) Synlett 181 Google Scholar
  20. 20.
    Jensen CM, Lindsay KB, Taaning RH, Karaffa J, Hansen AM, Skrydstrup T (2005) J Am Chem Soc 127:6544 Google Scholar
  21. 21.
    Hansen AM, Lindsay KB, Skrydstrup T, unpublished results Google Scholar
  22. 22.
    Matsumura Y, Shirakawa Y, Satoh Y, Umimo M, Tanaka T, Maki T, Onomura O (2000) Org Lett 2:1689 CrossRefGoogle Scholar
  23. 23.
    Boto A, Hernández R, León Y, Suárez E (2001) J Org Chem 66:7796 CrossRefGoogle Scholar
  24. 24.
    Boto A, Hernández R, Montoya A, Suárez E (2002) Tetrahedron Lett 43:8269 Google Scholar
  25. 25.
    Easton CJ, Ivory AJ, Smith CA (1997) J Chem Soc Perkin Trans 2:503 Google Scholar
  26. 26.
    Gavrila A, Andersen L, Skrydstrup T (2005) Tetrahedron Lett 46:6205 CrossRefGoogle Scholar
  27. 27.
    Spantulescu MD, Jain RP, Derksen DJ, Vederas JC (2003) Org Lett 5:2963, CrossRefGoogle Scholar
  28. 28.
    Jain RP, Vederas JC (2003) Org Lett 5:4669 CrossRefGoogle Scholar
  29. 29.
    Postema MHD (1995) C-glycoside synthesis, 1st edn. CRC, Boca Raton Google Scholar
  30. 30.
    Levy DE, Tang C (1995) The chemistry of C-glycosides, 1st edn. Elsevier, Oxford Google Scholar
  31. 31.
    Keck GE, Enholm EJ, Yates JB, Wiley MR (1985) Tetrahedron 41:4079 CrossRefGoogle Scholar
  32. 32.
    Postema MHD, Piper JL, Liu L, Shen J, Faust M, Andreana P (2003) J Org Chem 68:4748 CrossRefGoogle Scholar
  33. 33.
    Mikkelsen LM, Skrydstrup T (2003) J Org Chem 68:2123 CrossRefGoogle Scholar
  34. 34.
    Chung WJ, Jeon GH, Yoon JY, Kim S (2002) Bull Korean Chem Soc 23:1187 Google Scholar
  35. 35.
    Kim S, Lee IY, Yoon JY, Oh DH (1996) J Am Chem Soc 118:5138 Google Scholar
  36. 36.
    Kim S, Lee IY, Yoon J (1997) Synlett 475 Google Scholar
  37. 37.
    Kim S, Yoon JY (1997) J Am Chem Soc 119:5982 Google Scholar
  38. 38.
    Bertrand F, Quiclet-Sire B, Zard SZ (1999) Angew Chem Int Ed 38:1943 CrossRefGoogle Scholar
  39. 39.
    Ollivier C, Renaud P (2001) J Am Chem Soc 123:4717 CrossRefGoogle Scholar
  40. 40.
    Dötz KH, Gomes da Silva E (2000) Tetrahedron 56:8291, CrossRefGoogle Scholar
  41. 41.
    Parrish JD, Little RD (2002) Org Lett 4:1439 CrossRefGoogle Scholar
  42. 42.
    Gansauer A, Bluhm H (2000) Chem Rev 100:2771 CrossRefGoogle Scholar
  43. 43.
    Gansauer A, Lauterbach T, Narayan S (2003) Angew Chem Int Ed 42:5556 Google Scholar
  44. 44.
    de Greef M, Zard SZ (2004) Tetrahedron 60:7781 Google Scholar
  45. 45.
    Cordero-Vargas A, Quiclet-Sire B, Zard SZ (2004) Tetrahedron Lett 45:7335 Google Scholar
  46. 46.
    Francisco CG, González Martin C, Suárez E (1998) J Org Chem 63:2099 Google Scholar
  47. 47.
    Boto A, Hernández D, Hernández R, Suárez E (2003) J Org Chem 68:5310 CrossRefGoogle Scholar
  48. 48.
    Boto A, Hernández D, Hernández R, Suárez E (2004) Org Lett 6:3785 CrossRefGoogle Scholar
  49. 49.
    Alonso-Cruz CR, León EI, Ortiz-López FJ, Rodríguez MS, Suárez E (2005) Tetrahedron Lett 46:5265 CrossRefGoogle Scholar
  50. 50.
    Francisco CG, León EI, Martín A, Moreno P, Rodríguez MS, Suárez E (2001) J Org Chem 66:6967 Google Scholar
  51. 51.
    Martín A, Pérez-Martín I, Suárez E (2002) Tetrahedron Lett 43:4781 Google Scholar
  52. 52.
    Crich D, Yao Q (2003) Org Lett 5:2189 Google Scholar
  53. 53.
    Roberts BP, Smits TM (2000) Tetrahedron Lett 42:3663 Google Scholar
  54. 54.
    Hanessian S, Plessas NR (1969) J Org Chem 34:1035 Google Scholar
  55. 55.
    Hanessian S, Plessas NR (1969) J Org Chem 34:1045 Google Scholar
  56. 56.
    Hanessian S, Plessas NR (1969) J Org Chem 34:1053 Google Scholar
  57. 57.
    Spencer RP, Schwartz J (2000) Tetrahedron 56:2103 CrossRefGoogle Scholar
  58. 58.
    Hansen T, Daasbjerg K, Skrydstrup T (2000) Tetrahedron Lett 41:8645 CrossRefGoogle Scholar
  59. 59.
    Gansauer A (1998) Synlett 801 Google Scholar
  60. 60.
    Gansauer A, Bluhm H (2000) Chem Rev 100:2771 CrossRefGoogle Scholar
  61. 61.
    Gansauer A, Lauterbach T, Narayan S (2003) Angew Chem Int Ed 42:5556 Google Scholar
  62. 62.
    Francisco CG, Herrera A, Suárez E (2002) J Org Chem 67:7439 CrossRefGoogle Scholar
  63. 63.
    Chiara JL, García Á, Cristóbal-Lumbroso G (2005) J Org Chem 70:4142 CrossRefGoogle Scholar
  64. 64.
    de Gracia IS, Bobo S, Martín-Ortega MD, Chiara JL (1999) Org Lett 1:1705 Google Scholar

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AarhusAarhus CDenmark

Personalised recommendations