Skip to main content

Altitudinal Surface-Mounted Molecular Rotors

  • Chapter
  • First Online:
Molecular Machines

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 262))

Abstract

After a general description of some potential applications of artificial altitudinal surface-mounted molecular rotors, the synthesis, surface mounting, and characterization of the first examples of such rotors on a gold surface are described. Molecular dynamics calculations are used to discuss how a unidirectional rotation can be induced by an electric field oscillating normal to the surface as a function of its amplitude and frequency, as well as temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinosita K Jr, Yasuda R, Noji H, Ishiwata S, Yoshida M (1988) Cell 93:21

    Google Scholar 

  2. Schliwa M (ed) (2003) Molecular Motors. Wiley, Weinheim

    Google Scholar 

  3. Feynman RP (1960) Saturday Rev 43, April 2, p 45

    Google Scholar 

  4. Feynman R, Leighton RB, Sands M (1963) The Feynman Lectures on Physics, vol. 1. Addison-Wesley Longman, Reading, Mass, Vol 1, 46-1

    Google Scholar 

  5. Christie GH, Kenner J (1922) J Chem Soc 121:614

    CAS  Google Scholar 

  6. Kemp JD, Pitzer KS (1936) J Chem Phys 4:749

    Article  CAS  Google Scholar 

  7. For a review, see Kottas GS, Clarke LI, Horinek D, Michl J (2005) Chem Rev 105:1281

    Article  CAS  Google Scholar 

  8. Iwamura H, Mislow K (1988) Acc Chem Res 21:175

    Article  CAS  Google Scholar 

  9. Feringa BL (2001) Acc Chem Res 34:504

    Article  CAS  Google Scholar 

  10. Leigh DA, Wong JKY, Dehez F, Zerbetto F (2003) Nature 424:174

    Article  CAS  ISI  Google Scholar 

  11. Kelly TR (2001) Acc Chem Res 34:514

    Article  CAS  Google Scholar 

  12. Arnold BR, Balaji V, Downing JW, Radziszewski JG, Fisher JJ, Michl J (1991) J Am Chem Soc 113:2910

    CAS  Google Scholar 

  13. Kaszynski P, Friedli AC, Michl J (1992) J Am Chem Soc 114:601

    Article  CAS  Google Scholar 

  14. Tinkertoy is a trademark of Playskool, Inc., Pawtucket, RI 02862, and designates a children's toy construction set consisting of straight wooden sticks and other simple elements insertable into spool-like connectors

    Google Scholar 

  15. Kaszynski P, Michl J (1988) J Am Chem Soc 110:5225

    Article  CAS  Google Scholar 

  16. Michl J, Kaszynski P, Friedli AC, Murthy GS, Yang H-C, Robinson RE, McMurdie ND, Kim T (1989) In: de Meijere A, Blechert S (eds) Strain and Its Implications in Organic Chemistry. NATO ASI Series, vol 273. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 463

    Google Scholar 

  17. Harrison RM, Magnera TF, Vacek J, Michl J (1997) In: Michl J (ed) Modular Chemistry. Kluwer, Dordrecht, The Netherlands, p 1

    Google Scholar 

  18. Vacek J, Michl J (1997) New J Chem 21:1259

    CAS  Google Scholar 

  19. Prokop A, Vacek J, Michl J (unpublished results)

    Google Scholar 

  20. Clarke LI, Horinek D, Kottas GS, Varaksa N, Magnera TF, Hinderer TP, Horansky RD, Michl J, Price JC (2002) Nanotechnology 13:533

    Article  CAS  ISI  Google Scholar 

  21. Varaksa N, Pospíšil L, Magnera TF, Michl J (2002) Proc Nat Acad Sci USA 99:5012

    Article  CAS  Google Scholar 

  22. Magnera TF, Michl J (2002) Proc Nat Acad Sci USA 99:4788

    Google Scholar 

  23. Aviram A, Ratner MA (eds) (1998) Molecular Electronics: Science and Technology. New York Academy of Sciences, New York, NY

    Google Scholar 

  24. Troisi A, Ratner MA (2002) J Am Chem Soc 124:14528

    Article  CAS  Google Scholar 

  25. Troisi A, Ratner MA (2004) Nano Letters 4:591

    Article  CAS  ISI  Google Scholar 

  26. Rappe AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM (1992) J Am Chem Soc 1=4:10024

    Google Scholar 

  27. Rappe AK, Goddard III WA (1991) J Phys Chem 95:3358

    Article  CAS  Google Scholar 

  28. Schwab PFH, Levin MD, Michl J (1999) Chem Rev 99:1863

    Article  CAS  Google Scholar 

  29. Harrison RM, Brotin T, Noll BC, Michl J (1997) Organometallics 16:3401

    CAS  ISI  Google Scholar 

  30. Zheng X, Mulcahy ME, Horinek D, Galeotti F, Magnera TF, Michl J (2004) J Am Chem Soc 126:4540

    CAS  Google Scholar 

  31. Schöberl U, Magnera TF, Harrison R, Fleischer F, Pflug JL, Schwab PFH, Meng X, Lipiak D, Noll BC, Allured VS, Rudalevige T, Lee S, Michl J (1997) J Am Chem Soc 119:3907

    Google Scholar 

  32. Mulcahy ME, Magnera TF, Michl J (unpublished results)

    Google Scholar 

  33. Zheng X, Wang B, Michl J (unpublished results)

    Google Scholar 

  34. Zhong C, Brush R, Anderegg J, Porter M (1999) Langmuir 15:518

    Article  CAS  ISI  Google Scholar 

  35. Noh J, Kato H, Kawai M, Hara M (2002) J Phys Chem B 106:13268

    CAS  Google Scholar 

  36. Ishida T, Abe K, Yase K, Tamada K (2000) Langmuir 16:1703

    ISI  Google Scholar 

  37. Baxter PNW (1996) In: Lehn JM, Chair E, Atwood JL, Davis JED, MacNichol DD, Vögtle F (eds) Comprehensive Supramolecular Chemistry, vol 9, Chapt 5. Pergamon Press, Oxford, p 165

    Google Scholar 

  38. Fujita M (1998) Chem Soc Rev 27:417

    Article  CAS  Google Scholar 

  39. Balzani V, Gomez-Lopez M, Stoddart JF (1998) Acc Chem Res 31:405

    CAS  Google Scholar 

  40. Caulder DL, Raymond KN (1999) Acc Chem Res 32:975

    Article  CAS  Google Scholar 

  41. Leininger S, Olenyuk B, Stang PJ (2000) Chem Rev 100:853

    Article  CAS  Google Scholar 

  42. Lehn J-M, Ball P (2000) New Chem 300

    Google Scholar 

  43. Cotton FA, Lin C, Murillo CA (2001) Acc Chem Res 34:759

    Article  CAS  Google Scholar 

  44. Schwab PFH, Noll BC, Michl J (2002) J Org Chem 67:5476

    CAS  Google Scholar 

  45. Caskey DC, Shoemaker RK, Michl J (2004) Org Lett 6:2093

    Article  CAS  Google Scholar 

  46. Caskey DC, Michl J (2005) J Org Chem 70:5442

    Article  CAS  Google Scholar 

  47. Caskey DC, Wang B, Zheng X, Michl J Collect Czech Chem Commun (in press)

    Google Scholar 

  48. Michl J, Thulstrup EW (1987) Acc Chem Res 20:192

    Article  CAS  Google Scholar 

  49. Thulstrup EW, Michl J (1988) Spectrochim Acta 44A:767

    CAS  Google Scholar 

  50. Michl J, Thulstrup EW (1995) Spectroscopy with Polarized Light. Solute Alignment by Photoselection, in Liquid Crystals, Polymers, and Membranes, revised soft-cover edition. Wiley, Weinheim, p 592

    Google Scholar 

  51. Radziszewski JG, Downing JW, Gudipati MS, Balaji V, Thulstrup EW, Michl J (1996) J Am Chem Soc 118:10275

    CAS  Google Scholar 

  52. Mulcahy ME, Berets SL, Milosevic M, Michl J (2004) J Phys Chem B 108:1519

    Article  CAS  Google Scholar 

  53. Horinek D, Michl J (2005) Natl Acad Sci 102:14175

    CAS  Google Scholar 

  54. Vacek J, Michl J (2001) Proc Natl Acad Sci USA 98:5481

    Article  CAS  Google Scholar 

  55. Horinek D, Michl J (2003) J Am Chem Soc 125:11900

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work on molecular rotors has been supported by the USARO (DAAD19-01-1-0521) and the NSF (CHE-0446688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Michl .

Editor information

T. Ross Kelly

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Magnera, T.F., Michl, J. Altitudinal Surface-Mounted Molecular Rotors. In: Kelly, T.R. (eds) Molecular Machines. Topics in Current Chemistry, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_014

Download citation

Publish with us

Policies and ethics