Skip to main content

Impedimetric Detection of DNA Hybridization: Towards Near-Patient DNA Diagnostics

  • Chapter
  • First Online:
Immobilisation of DNA on Chips I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 260))

Abstract

Immobilization strategies for the attachment of nucleotide probes to both microarrays and microfabricated interdigitated electrodes differ to address the specific requirements for optical and electrochemical detection, respectively. The DNA immobilization chemistry dictates how the probe molecule is presented to its complement during hybridization and thereby contributes significantly to the final detection signal. This chapter introduces the relevant immobilization strategies for DNA probes on both microarrays and microfabricated interdigitated microsensor electrode arrays. Specifically, we examine immobilization via electrostatic attraction and covalent coupling. The immobilization of DNA presents many challenges because of the need to promote efficient hybridization while minimizing or eliminating nonspecific adsorption to exposed areas of the device substrate. The immobilization strategies also present challenges because of the various materials and surface chemistries that may be involved, the flow characteristics during detection, and the need to perform hybridizations under specific buffer and temperature cycling conditions. This paper provides a rationale for the move towards low-density genosensors using electrochemical detection with focused example applications in human health care. Specifically, electrochemical impedance spectroscopy (EIS) is introduced and discussed as an advantageous method for DNA hybridization detection. The various immobilization strategies are discussed in reference to EIS detection. In conclusion, the advantages of impedance detection are addressed with critical assessments for the advancement of impedance detection for DNA hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

adenine

Ag/AgCl:

silver/silver chloride

AC:

alternating current

AFM:

atomic force microscopy

APS:

3-aminopropyltrimethoxysilane

BSA:

bovine serum albumin

C:

cytosine

C :

capacitance

CEPs:

conducting electroactive polymers

CLIA:

Clinical Laboratory Improvement Amendments

CE:

counter electrode

Cy3:

cyanine 3

Cy5:

cyanine 5

DSG:

disuccinimidylglutarate

DNA:

deoxyribose nucleic acid

dsDNA:

double-strand DNA

EIS:

electrical impedance spectroscopy

ATR-FTIR:

attenuated total reflectance-Fourier transform infrared spectroscopy

G:

guanine

GPS:

glycidoxypropyltrimethoxysilane

i :

AC current response signal

i m :

Maximum AC current response signal

IME:

interdigitated microsensor electrode

MPS:

3-mercaptopropyltrimethoxysilane

PAMAM:

polyamidoamine

PDITC:

phenylenediisothiocyanate

PDITC:

phenylenediisothiocyanate

p-t-p:

peak-to-peak

R :

resistance

RE:

reference electrode

RNA:

ribonucleic acid

R o :

equivalent circuit resistance

R s :

solution resistance

SA:

succinic anhydride

ssDNA:

single-strand DNA

SMPB:

succinimidyl 4-[malemidophenyl] butyrate

t :

time

T:

thymine

QCM:

quartz crystal microbalance

V :

voltage

V m :

maximum voltage

WE:

working electrode

X :

reactance

Z :

impedance

Z′:

imaginary component of impedance

Z′′:

real component of impedance

∣Z∣:

magnitude of impedance

θ:

phase shift

τp :

time constant

ω:

radial frequency

References

  1. Schena M (2003) Microarray Analysis. Wiley, New York

    Google Scholar 

  2. Livshits MA, Mirzabekov AD (1996) Biophys J 71:2795

    CAS  Google Scholar 

  3. Afanassiev V, Hanemann V, Wolfe S (2000) Nucleic Acids Res 28:e66

    Article  CAS  Google Scholar 

  4. Stillman BA, Tonkinson JL (2000) BioTechniques 29:630

    CAS  Google Scholar 

  5. Guiseppi-Elie A (2003) PharmaTech 87:1

    Google Scholar 

  6. Vercoutere W, Akeson M (2002) Curr Opin Chem Biol 6:816

    Article  CAS  Google Scholar 

  7. Popovich ND, Eckhardt AE, Mikulecky JC, Napier ME, Thomas RS (2002) Talanta 56:821

    Article  CAS  Google Scholar 

  8. Qingwen L, Guan L, Jun F, Dawen C, Qi O (2000) Analyst 125:1908

    Article  Google Scholar 

  9. Wang J, Jiang M, Mukherjee B (1999) Anal Chem 71:4095

    CAS  Google Scholar 

  10. Wang J, Kawde A-N, Sahlin E (2000) Analyst 125:5

    CAS  Google Scholar 

  11. Wang J, Xiaohua C, Renandes JR, Grant DH, Ozsoz M (1998) J Electroanal Chem 441:167

    CAS  Google Scholar 

  12. Wang J, Xiaohua C, Jonsson C, Balakrishnan M (1996) Electroanalysis 8:2

    Google Scholar 

  13. Wang J, Zhang X, Parrado C, Rivas G (1999) Electrochem Commun 1:197

    CAS  Google Scholar 

  14. Takenaka S, Uto Y, Saita H, Yokoyama M, Kondo H, Wilson WD (1998) Chemical Communications 10:1111

    Google Scholar 

  15. Takenaka S, Yamashita K, Takagi M, Uto Y, Kondo H (2000) Anal Chem 72:1334

    Article  CAS  Google Scholar 

  16. Zhao Y-D, Pang D-W, Hu S, Wang Z-L, Cheng J-K, Dai H-P (1999) Talanta 49:751

    Article  CAS  Google Scholar 

  17. Hianik T, Gajdos V, Krivanek R, Oretskaya T, Metelev V, Volkov E, Vadgama P (2001) Bioelectrochem 53:199

    Article  CAS  Google Scholar 

  18. Taft B, O'Keefe M, Fourkas JT, Kelley SO (2002) Anal Chim Acta 496:81

    Google Scholar 

  19. Kell DB (1987) In: Turner A, Karube I, Wilson GS (eds) Biosensors: Fundamentals and Applications. Oxford University Press, Oxford, p 427

    Google Scholar 

  20. Hubrecht J (1998) In: Helsen JA, Breme HJ (eds) Metals as Biomaterials. Wiley, Chichester

    Google Scholar 

  21. Hang TC, Guiseppi-Elie A (2004) Biosens Bioelectron 19:1537

    Article  CAS  Google Scholar 

  22. Xu D-K, Ma LR, Liu Y-Q, Jiang ZH, Liu ZH (1999) Analyst 124:533

    CAS  Google Scholar 

  23. Korkola J, Estep A, Pejavar S, DeVries S, Jensen R, Waldman F (2003) BioTechniques 35:828

    CAS  Google Scholar 

  24. Towery RB, Fawcett NC, Zhang P, Evans JA (2001) Biosens Bioelectron 16:1

    Article  CAS  Google Scholar 

  25. Stillman BA, Tonkinson JL (2001) Anal Biochem 295:149

    Article  CAS  Google Scholar 

  26. Wang J, Cai X, Fernandes DH, Ozsoz M (1997) Anal Chem 69:4056

    CAS  Google Scholar 

  27. Berney H, Oliver K (2005) Biosens Bioelectron (pending)

    Google Scholar 

  28. Pastre D, Peitrement O, Fusil S, Landousy F, Jeusset J, David M-O, Hamon L, Le Cam E, Zozime A (2003) Biophys J 85:2507

    Article  CAS  Google Scholar 

  29. Taylor S, Smith S, Windle B, Guiseppi-Elie AT (2003) Nucleic Acids Res 31:e87

    Google Scholar 

  30. Wang J, Kirgoz UA, Mo J-W, Lu J, Kawde A-N, Muck A (2001) Electrochem Commun 2001:203

    Google Scholar 

  31. Brett C, Brett AM, Serrano S (1999) Electrochim Acta 44:4233

    Article  CAS  Google Scholar 

  32. Wang J, Ozsoz M, Cai X, Rivas G, Shiraishi H, Grant DH, Chicharro M, Fernandes J, Palecek E (1998) Bioelectrochem Bioenerg 1998:33

    Google Scholar 

  33. Hu C, Hu S (2004) Electrochim Acta 49:405

    CAS  Google Scholar 

  34. Strasak L, Dvorak J, Hason S, Vetterl V (2002) Bioelectrochem 56:37

    CAS  Google Scholar 

  35. Beier M, Hoheisel JD (1999) Nucleic Acids Res 27:1970

    Article  CAS  Google Scholar 

  36. Benters R, Niemeyer CM, Drutschmann D, Blohm D, Wohrle D (2002) Nucleic Acids Res 30:e10

    Article  Google Scholar 

  37. Charles PT, Vora GJ, Andreadis JD, Fortney AJ, Meader CE, Dulcey CS, Stenger DA (2003) Langmuir 19:1586

    Article  CAS  Google Scholar 

  38. Guo Z, Guilfoyle RA, Thiel AJ, Wang R, Smith LM (1994) Nucleic Acids Res 22:5456

    CAS  Google Scholar 

  39. Hilliard LR, Zhao X, Tan W (2002) Anal Chim Acta 470:51

    Article  CAS  Google Scholar 

  40. Moser I, Schalkhammer T, Pittner F, Urban G (1997) Biosens Bioelectron 12:729

    Article  CAS  Google Scholar 

  41. Pividori MI, Merkoci A, Alegret S (2000) Biosens Bioelectron 15:291

    Article  CAS  Google Scholar 

  42. Cloarec JP, Deligianis N, Martin JR, Lawrence I, Souteyrand E, Polychronakos C, Lawrence MF (2002) Sensors and Actuators B: Chemical 58:405

    Google Scholar 

  43. Cloarec JP, Martin JR, Polychronakos C, Lawrence I, Lawrence MF, Souteyrand E (1999) Sens Actuators, B 58:394

    Article  Google Scholar 

  44. Lamture JB, Beattie KL, Burke BE, Eggers MD, Ehrlich DJ, Fowler R, Hollis MA, Kosicki BB, Reich RK, Smith SR (1994) Nucleic Acids Res 22:2121

    CAS  Google Scholar 

  45. Maskos U, Southern EM (1992) Nucleic Acids Res 20:1679

    CAS  Google Scholar 

  46. Piunno PAE, Watterson J, Wust CC (1999) Anal Chim Acta 400:73

    Article  CAS  Google Scholar 

  47. Preininger C, Sauer U (2003) Sens Actuators, B 90:98

    Article  CAS  Google Scholar 

  48. Sales JAA, Prado AGS, Airoldi C (2002) Polyhedron 21:2647

    Article  CAS  Google Scholar 

  49. Benters R, Niemeyer CM, Wohrle D (2001) Chem Bio Chem 2:686

    CAS  Google Scholar 

  50. Gheorge M, Guiseppi-Elie A (2003) Biosens Bioelectron 19:95

    Google Scholar 

  51. Cloarec JP, Deligianis N, Martin JR, Lawrence I, Souteyrand E, Polychronakos C, Lawrence MF (2002) Biosens Bioelectron 17:405

    Article  CAS  Google Scholar 

  52. Chrisey LA, Lee GU, O'Ferrall CE (1996) Nucleic Acids Res 24:3031

    CAS  Google Scholar 

  53. Fu Y, Yuan R, Xu Y, Chai Y, Zhong X, Zhong X, Tang D (2005) Biochem Eng J 23:37

    CAS  Google Scholar 

  54. Fu Y, Yuan R, Xu L, Chai Y, Liu Y, Tang D, Zhang Y (2005) J Biochem Biophys Methods 62:163

    CAS  Google Scholar 

  55. Park S-J, Taton TA, Mirkin CA (2002) Science 295:1503

    Article  CAS  Google Scholar 

  56. Livache T, Bazin H, Caillat P, Roget A (1998) Biosens Bioelectron 13:629

    Article  CAS  Google Scholar 

  57. Gheorge M, Lei C, Guiseppi-Elie A (2000) A Proc ACS PMSE 83:550

    Google Scholar 

  58. Xu Y, Jiang Y, Cai H, Pin-Gang H, Yu-Zhi F (2004) Anal Chim Acta 516:19

    Article  CAS  Google Scholar 

  59. Farace G, Lillie G, Hianik T, Payne P, Vadgama P (2002) Bioelectrochem 55:1

    Article  CAS  Google Scholar 

  60. Korri-Youssoufi H, Garnier F, Srivtava P, Godillot P, Yassar A (1997) J Am Chem Soc 199:7388

    Google Scholar 

  61. Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, Charafe-Jauffret E, Loriod B, Bachelart L, Montfort J, Victorero G, Viret F, Ollendorff V, Fert V, Giovaninni M, Depero J-R, Nguyen C, Viens P, Monges G, Birnbaum D, Houlgatte R (2004) Oncogene 23:1377

    CAS  Google Scholar 

  62. Beer DG, Kardia S, Huang C-C, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasake S, Taylor J, Iannettoni MD, Orringer MB, Hanash S (2002) Nat Med 8:816

    CAS  Google Scholar 

  63. Parmigiani G, Garrett-Mayer ES, Anbazhagan R, Garielson E (2004) Clin Cancer Res 10:2922

    CAS  Google Scholar 

  64. Brabender J, Marjoram P, Salonga D, Metzger R, Schneider PM, Park JM, Schneider S, Holscher AH, Yin J, Meltzer SJ, Danenberg KD, Danenber PV, Lord RV (2004) Oncogene 23:4780

    Article  CAS  Google Scholar 

  65. Glinsky GV, Higashiyama T, Glinskii AB (2004) Clin Cancer Res 10:2272

    CAS  Google Scholar 

  66. Wilson CA, Dering J (2004) Breast Cancer Res 6:192

    Article  CAS  Google Scholar 

  67. Lee Y, Lee C-K (2003) Bioinformatics 19:1132

    CAS  Google Scholar 

  68. Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, Chan WC, Botstein D, Brown P (2000) Genome Biology 1:0003.1

    Article  Google Scholar 

  69. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuru MA, Bloomfield CD, Lander ES (1999) Science 286:531

    Article  CAS  Google Scholar 

  70. Bijlani R, Cheng Y, Pearce DA, Brooks AI, Ogihara M (2003) Bioinformatics 19:62

    Article  CAS  Google Scholar 

  71. Cheng J, Sheldon EL, Wu L, Uribe A, Gerrue LO, Carrino J, Heller MJ, O'Connell JP (1998) Nat Biotechnol 16:541

    Article  CAS  Google Scholar 

  72. Breadmore MC, Wolfe KA, Arcibal IG, Leung WK, Dickson D, Giordano BC, Power ME, Ferrance JP, Feldman SH, Norris PM, Landers JP (2003) Anal Chem 75:1880

    Article  CAS  Google Scholar 

  73. Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, Ramsey JM (2000) Anal Chem 72:2995

    Article  CAS  Google Scholar 

  74. Obeid PJ, Christapoulos TK, Crabtree HJ, Backhouse CJ (2003) Anal Chem 75:288

    Article  CAS  Google Scholar 

  75. Liu R-H, Yang J, Lenigk R, Bonanno J, Grodzinski P (2003) Anal Chem 76:1824

    Google Scholar 

  76. Henke C (1998) IVD Technology, p 35

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Commonwealth of Virginia's Department of Planning Commonwealth Technologies Research Fund (CTRF grant no. SE2002-02 for Cancer Genomics and Development of Diagnostic Tools and Therapies) and the consortium of the VCU Center for Bioelectronics, Biosensors and Biochips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Guiseppi-Elie .

Editor information

Christine Wittmann

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Guiseppi-Elie, A., Lingerfelt, L. Impedimetric Detection of DNA Hybridization: Towards Near-Patient DNA Diagnostics. In: Wittmann, C. (eds) Immobilisation of DNA on Chips I. Topics in Current Chemistry, vol 260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_006

Download citation

Publish with us

Policies and ethics