Skip to main content

Preparation and Electron Conductivity of DNA-Aligned Cast and LB Films from DNA-Lipid Complexes

  • Chapter
  • First Online:
Immobilisation of DNA on Chips I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 260))

Abstract

We describe here a simple preparation of a DNA-lipid complex that is soluble in organic media, and preparations of DNA-aligned thin films from the cast-stretching method and the Langmuir--Blodgett (LB) method. The DNA-lipid complex in which counter cations of phosphate anions are changed to cationic lipophilic amphiphiles was prepared by simply mixing aqueous solutions of DNA and cationic amphiphiles. The DNA-lipid complex is soluble and forms a double-strand structure in organic solutions. A self-standing, water-insoluble DNA-lipid film could be prepared by casting from the organic solution or a hot-press method, and DNA strands were easily aligned in the film by stretching it in one direction. Another method of preparing DNA-aligned thin film is the LB method: anionic DNA strands are transferred with cationic lipid monolayers at the air-water interface by the vertical dipping method and DNA strands are aligned along the dipping direction. The film structure was confirmed by X-ray diffraction, CD spectra of DNA strands, and polarized absorption spectra of intercalated dye molecules. The aligned-DNA film showed a large anisotropic and ohmic electric current (10−3 S cm−1, A⊥/A// = 105) along stacked base-pairs of DNA strands aligned in the film. The large anisotropic photo current could also be observed through DNA strands with acridine orange intercalators depending on visible photo irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saenger W (1987) Principles of Nucleic Acid Structure. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Leslie AGW, Arnott S, Chandrasekaran R, Ratliff RL (1980) J Mol Biol 143:49

    Article  CAS  Google Scholar 

  3. Fuller W (1967) J Mol Biol 27:507

    Article  CAS  Google Scholar 

  4. Alam TM, Orban J, Drobny G (1990) Biochemistry 29:9610

    CAS  Google Scholar 

  5. Alam TM, Drobny GP (1993) Chem Rev 91:1545

    Google Scholar 

  6. Brandes R, Vold RR, Kearns DR (1988) Biopolymers 27:1159

    CAS  Google Scholar 

  7. Wada A (1964) Biopolymers 2:361

    CAS  Google Scholar 

  8. Norden B, Kubista M, Kurucsev T (1992) Q Rev Biophys 25:51

    CAS  Google Scholar 

  9. Strzelecka TE, Rill RL (1987) J Am Chem Soc 109:4513

    Article  CAS  Google Scholar 

  10. Prive GG, Heinmann U, Chandrasegaren S, Kan LS, Kopra ML, Dickerson RE (1987) Science 238:498

    CAS  Google Scholar 

  11. Moore DS, Wagner MF (1974) Biopolymers 13:977

    Article  CAS  Google Scholar 

  12. Hanlon S, Brudno S, Wu TT, Wolf B (1975) Biochemistry 14:1648

    Article  CAS  Google Scholar 

  13. Girod JC, Johnson WC Jr, Huntington SK, Maestre MF (1973) Biochemistry 12:5092

    Article  CAS  Google Scholar 

  14. Warning MJ (1965) J Mol Biol 13:269

    Google Scholar 

  15. Nelson JW, Tinoco I (1984) J Biopolymers 23:213

    CAS  Google Scholar 

  16. Chandrasekaran S, Jones RL, Wilson WD (1985) Biopolymers 24:1963

    Article  CAS  Google Scholar 

  17. Okahata Y, Ijiro K, Matsuzaki Y (1993) Langmuir 9:19

    Article  CAS  Google Scholar 

  18. Stein RS (1958) J Polym Sci 31:327; 34:709

    CAS  Google Scholar 

  19. Skotheim TA (ed) (1986) Handbook of Conducting Polymers, vol I and II. Marcel Dekker, New York

    Google Scholar 

  20. Yamamoto T, Maruyama T, Zhou Z, Ito T, Fukuda T, Yoneda Y, Begum F, Ikeda T, Sasaki S, Takezoe H, Fukuda A, Kubota K (1994) J Am Chem Soc 116:4832

    CAS  Google Scholar 

  21. Duda G, Wegner G (1988) Macromol Chem Rapid Commun 9:495

    CAS  Google Scholar 

  22. Erbach R, Hoffmann B, Schaub M, Wegner G (1992) Sensors and Actuators B 6:211

    Google Scholar 

  23. Gaines G Jr (1991) Langmuir 7:834

    CAS  Google Scholar 

  24. Karthaus O, Ringsdorf H, Tsukruk VV, Wendorff JH (1992) Langmuir 8:2279

    Article  CAS  Google Scholar 

  25. Malcom BR (1975) Adv Chem 145:338

    Google Scholar 

  26. Jones R, Tredgold RH (1988) J Phys D Appl Phys 21:449

    CAS  Google Scholar 

  27. Schwiegk S, Vahlenkamp T, Xu Y, Wegner G (1992) Macromolecules 25:2513

    Article  CAS  Google Scholar 

  28. Sukhorukhov GB, Yerokhin VV, Tronin A (1992) Biophysics 38:243

    Google Scholar 

  29. Ariga K, Okahata Y (1994) Langmuir 10:3255

    CAS  Google Scholar 

  30. Okahata Y, Ariga K (1987) J Chem Soc Chem Commun, p 1535

    Google Scholar 

  31. Okahata Y, Ariga K, Tanaka K (1992) Thin Solid Films 210=211:702

    Article  Google Scholar 

  32. Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossmass SH, Turro NJ, Barton JK (1993) Science 262:1025–1028

    CAS  Google Scholar 

  33. Homlin RE, Dandliker PE, Barton JK (1997) Angew Chem Int Ed 36:2714–2730

    Google Scholar 

  34. Kelly SO, Jackson NM, Hill MG, Barton JK (1999) Angew Chem Int Ed 38:941–945

    Google Scholar 

  35. Lewis FD, Letsinger RL, Wasielewski MR (2001) Acc Chem Res 34:159–170

    Article  CAS  Google Scholar 

  36. Shuster GB (2000) Acc Chem Res 33:253–260

    Google Scholar 

  37. Giese B (2000) Acc Chem Res 33:631–636

    Article  CAS  Google Scholar 

  38. Hartwith G, Caruana DJ, de L Woodyear T, Wu Y, Campbell CN, Heller A (1999) J Am Chem Soc 121:10803–10812

    Google Scholar 

  39. Wold DJ, Frisbie CD (2000) J Am Chem Soc 122:2970–2971

    Article  CAS  Google Scholar 

  40. Fink HW, Schonenberger C (1999) Nature 398:407–410

    CAS  Google Scholar 

  41. Kasumov AY, Kociak M, Gueron S, Roeulet B, Volkov VT, Klinov DV, Bouchiat H (2001) Science 291:280–282

    Article  CAS  Google Scholar 

  42. Ijiro K, Okahata Y (1992) J Chem Soc Chem Commun 1339–1341

    Google Scholar 

  43. Tanaka K, Okahata Y (1996) J Am Chem Soc 118:10679–10683

    CAS  Google Scholar 

  44. Okahata Y, Kobayashi T, Tanaka K (1996) Langmuir 12:1326–1330

    CAS  Google Scholar 

  45. Okahata Y, Tanaka K (1996) Thin Solid Films 284=285:6–8

    Article  Google Scholar 

  46. Okahata Y, Kobayashi T, Tanaka K, Shimomura M (1998) J Am Chem Soc 120:6165–6166

    Article  CAS  Google Scholar 

  47. Okahata Y, Kobayashi T, Nakayama H, Tanaka K (1998) Supramol Sci 5:317–320

    Article  CAS  Google Scholar 

  48. Okahata Y, Nakayama H (2000) Proc Japan Acad B 76:145–150

    Google Scholar 

  49. Kumar CV, Barton JK, Turro NJ (1985) J Am Chem Soc 107:5518

    Article  CAS  Google Scholar 

  50. Fromherz P, Rieger B (1986) J Am Chem Soc 108:5361

    Article  CAS  Google Scholar 

  51. Bensasson RV, Garaud JL, Leach SL, Miquel G, Seta P (1993) Chem Phys Lett 210:141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Okahata .

Editor information

Christine Wittmann

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Okahata, Y., Kawasaki, T. Preparation and Electron Conductivity of DNA-Aligned Cast and LB Films from DNA-Lipid Complexes. In: Wittmann, C. (eds) Immobilisation of DNA on Chips I. Topics in Current Chemistry, vol 260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_002

Download citation

Publish with us

Policies and ethics