Skip to main content

Understanding the Factors Influencing Stem Form with Modelling Tools

  • Chapter
  • First Online:
Progress in Botany Vol. 80

Part of the book series: Progress in Botany ((BOTANY,volume 80))

Abstract

The shape of tree trunks has been studied in Forest Sciences for a long time, since the volume and biomass of the tree is directly related to its shape. This paper reviews the tools used to study the stem form, theories that explain the observed variations and some empirical observations of changes in stem form with climatic variables. A case study using balsam fir (Abies balsamea) data is used to highlight some modelling aspects. The ways to quantify stem form have evolved over time, and now it is mainly studied by either modelling the vertical growth distribution along the stem or with stem taper models. The results of the former will have implications in the fields of dendrochronology and wood properties and the latter is more important for estimating volume in national forest inventories or for tree-to-wood product conversion studies. More recently, allometric exponents, or the comparison of different allometric exponents, have also been used to gain insight on the effects of climate on stem form. These three modelling approaches are however empirically based. Several theories have been proposed to explain the effects of various factors on stem form, with the hydraulic and biomechanic theories being the most widely used, and often opposed. Both theories, when simplified to their simplest expression, underline the importance of crown dimensions in determining tree form. Nevertheless, these theories cannot explain all of the variations observed empirically. In the case study of balsam fir, climatic variables such as total summer precipitation and mean winter temperature are slightly more important in explaining tree taper, when compared to average wind speed. This signifies that the proposed theories, be it either hydraulic or biomechanic, should be hybridized with physiological processes in order to account for all the empirical observations.

Communicated by Hans Pretzsch

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Arias NS, Scholz FG, Goldstein G, Bucci SJ (2017) The cost of avoiding freezing in stems: trade-off between xylem resistance to cavitation and supercooling capacity in woody plants. Tree Physiol 37:1251–1262

    Article  CAS  PubMed  Google Scholar 

  • Autin J, Gennaretti F, Arseneault D, Bégin Y (2015) Biases in RCS tree ring chronologies due to sampling heights of trees. Dendrochronologia 36:13–22

    Article  Google Scholar 

  • Brown HR (2013) The theory of the rise of sap in trees: some historical and conceptual remarks. Phys Perspect 15:320–358

    Article  Google Scholar 

  • Bruce D, Curtis RO, Vancoevering C (1968) Development of a system of taper and volume tables for red alder. For Sci 14:339–350

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Chang X, Zhao W, He Z (2014) Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River basin of arid northwestern China. Agric For Meteorol 187:14–21

    Article  Google Scholar 

  • Cochard H, Delzon S (2013) Hydraulic failure and repair are not routine in trees. Ann For Sci 70:659–661

    Article  Google Scholar 

  • Cortini F, Groot A, Filipescu CN (2013) Models of the longitudinal distribution of ring area as a function of tree and stand attributes for four major Canadian conifers. Ann For Sci 70:637–648

    Article  Google Scholar 

  • Courbet F (1999) A three-segmented model for the vertical distribution of annual ring area: application to Cedrus atlantica Manetti. For Ecol Manag 119:177–194

    Article  Google Scholar 

  • Courbet F, Houllier F (2002) Modelling the profile and internal structure of tree stem. Application to Cedrus atlantica (Manetti). Ann For Sci 59:63–80

    Article  Google Scholar 

  • Dean TJ, Baldwin VC (1996) The relationship between Reineke’s stand-density index and physical stem mechanics. For Ecol Manag 81:25–34

    Article  Google Scholar 

  • Dean TJ, Long JN (1986) Validity of constant-stress and elastic-instability principles of stem formation in Pinus contorta and Trifolium pratense. Ann Bot 58:833–840

    Article  Google Scholar 

  • Dean TJ, Roberts S, Gilmore D et al (2002) An evaluation of the uniform stress hypothesis based on stem geometry in selected North American conifers. Trees 16:559–568

    Article  Google Scholar 

  • Deleuze C, Houllier F (2002) A flexible radial increment taper equation derived from a process-based carbon partitioning model. Ann For Sci 59:141–154

    Article  Google Scholar 

  • Domec JC, Gartner BL (2002) Age-and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. Tree Physiol 22:91–104

    Article  CAS  PubMed  Google Scholar 

  • Domec J-C, Lachenbruch B, Meinzer FC (2006) Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. Am J Bot 93:1588–1600

    Article  PubMed  Google Scholar 

  • Ducey MJ (2009) Predicting crown size and shape from simple stand variables. J Sustain For 28:5–21

    Article  Google Scholar 

  • Duursma RA, Mäkelä A, Reid DEB et al (2010) Self-shading affects allometric scaling in trees. Funct Ecol 24:723–730

    Article  Google Scholar 

  • Eloy C (2011) Leonardo’s rule, self-similarity, and wind-induced stresses in trees. Phys Rev Lett 107:258101

    Article  PubMed  CAS  Google Scholar 

  • Eloy C, Fournier M, Lacointe A, Moulia B (2017) Wind loads and competition for light sculpt trees into self-similar structures. Nat Commun 8:1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Environment and Climate Change Canada, Government of Canada (2003) Canadian Wind Energy Atlas. http://www.windatlas.ca/index-en.php. Accessed 28 Jan 2018

  • Farnsworth KD, Gardingen PR (1995) Allometric analysis of Sitka spruce branches: mechanical versus hydraulic design principles. Trees 10:1–12

    Article  Google Scholar 

  • Farnsworth KD, Niklas KJ (1995) Theories of optimization, form and function in branching architecture in plants. Funct Ecol 9:355–363

    Article  Google Scholar 

  • Fiora A, Cescatti A (2008) Vertical foliage distribution determines the radial pattern of sap flux density in Picea abies. Tree Physiol 28:1317–1323

    Article  PubMed  Google Scholar 

  • Fortin M, Schneider R, Saucier J-P (2013) Volume and error variance estimation using integrated stem taper models. For Sci 59:345–358

    Google Scholar 

  • Franceschini T, Schneider R (2014) Influence of shade tolerance and development stage on the allometry of ten temperate tree species. Oecologia 176:739–749

    Article  PubMed  Google Scholar 

  • Franceschini T, Martin-Ducup O, Schneider R (2016) Allometric exponents as a tool to study the influence of climate on the trade-off between primary and secondary growth in major north-eastern American tree species. Ann Bot 117:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garber SM, Maguire DA (2005) Vertical trends in maximum branch diameter in two mixed-species spacing trials in the central Oregon Cascades. Can J For Res 35:295–307

    Article  Google Scholar 

  • Gardiner B, Berry P, Moulia B (2016) Wind impacts on plant growth, mechanics and damage. Plant Sci 245:94–118

    Article  CAS  PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB et al (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Goudiaby V, Brais S, Berninger F, Schneider R (2012) Vertical patterns in specific volume increment along stems of dominant jack pine (Pinus banksiana) and black spruce (Picea mariana) after thinning. Can J For Res 42:733–748

    Article  Google Scholar 

  • Groot A, Brown KM, Morrison IK, Barker JE (1984) A 10-year tree and stand response of jack pine to urea fertilization and low thinning. Can J For Res 14:44–50

    Article  Google Scholar 

  • Huang J, Tardif JC, Bergeron Y et al (2010) Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Glob Change Biol 16:711–731

    Article  Google Scholar 

  • Immanen J, Nieminen K, Smolander O-P et al (2016) Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Curr Biol 26:1990–1997

    Article  CAS  PubMed  Google Scholar 

  • James KR, Haritos N, Ades PK (2006) Mechanical stability of trees under dynamic loads. Am J Bot 93:1522–1530

    Article  PubMed  Google Scholar 

  • Karlsson K (2000) Stem form and taper changes after thinning and nitrogen fertilization in Picea abies and Pinus sylvestris stands. Scand J For Res 15:621–632

    Article  Google Scholar 

  • Kershaw JA Jr (2001) Influence of vertical foliage structure on the distribution of stem cross-sectional area increment in western hemlock and balsam fir [For Sci 46(1): 86–94]. For Sci 47:117–118

    Google Scholar 

  • Kershaw JA, Maguire DA (2000) Influence of vertical foliage structure on the distribution of stem cross-sectional area increment in western hemlock and balsam fir. For Sci 46:86–94

    Google Scholar 

  • King DA, Davies SJ, Tan S, Nur Supardi MN (2009) Trees approach gravitational limits to height in tall lowland forests of Malaysia. Funct Ecol 23:284–291

    Article  Google Scholar 

  • Klos RJ, Wang GG, Dang Q-L, East EW (2007) Taper equations for five major commercial tree species in Manitoba, Canada. West J Appl For 22:163–170

    Google Scholar 

  • Kozak A (1988) A variable-exponent taper equation. Can J For Res 18:1363–1368

    Article  Google Scholar 

  • Lambert MC, Ung CH, Raulier F (2005) Canadian national tree aboveground biomass equations. Can J For Res 35:1996–2018

    Article  Google Scholar 

  • Landsberg J, Waring R, Ryan M (2017) Water relations in tree physiology: where to from here? Tree Physiol 37:18–32

    PubMed  Google Scholar 

  • Larson PR (1963) Stem form development of forest trees. For Sci 9:a0001–a0042

    Google Scholar 

  • Lee W-K, Biging GS, Son Y et al (2006) Geostatistical analysis of regional differences in stem taper form of Pinus densiflora in central Korea. Ecol Res 21:513–525

    Article  Google Scholar 

  • Leites LP, Robinson AP (2004) Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework. For Sci 50:204–212

    Google Scholar 

  • Li R, Weiskittel AR (2010) Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Ann For Sci 67:302

    Article  Google Scholar 

  • Mäkelä A (1997) A carbon balance model of growth and self-pruning in trees based on structural relationships. For Sci 43:7–24

    Google Scholar 

  • Mäkelä A (1999) Acclimation in dynamic models based on structural relationships. Funct Ecol 13:145–156

    Article  Google Scholar 

  • Mäkelä A (2002) Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol 22:891–905

    Article  PubMed  Google Scholar 

  • Mäkelä A, Vanninen P (2001) Vertical structure of Scots pine crowns in different age and size classes. Trees 15:385–392

    Article  Google Scholar 

  • Mäkinen H, Isomäki A (2004) Thinning intensity and long-term changes in increment and stem form of Norway spruce trees. For Ecol Manag 201:295–309

    Article  Google Scholar 

  • Mattheck C (2000) Comments on “Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels” by K.J. Niklas, H.-C. Spatz, Trees (2000) 14:230–237. Trees 15:63–63

    Article  Google Scholar 

  • Max TA, Burkhart HE (1976) Segmented polynomial regression applied to taper equations. For Sci 22:283–289

    Google Scholar 

  • Meng SX, Lieffers VJ, Reid DEB et al (2006) Reducing stem bending increases the height growth of tall pines. J Exp Bot 57:3175–3182

    Article  CAS  PubMed  Google Scholar 

  • Metzger K (1893) Der Wind als massgebender Faktor für das Wachstum der Bäume. Mündener Forstl Hefte 3:35–86

    Google Scholar 

  • Millet J (2012) L’architecture des arbres des régions tempérées. Multimondes, Montreal

    Google Scholar 

  • Moore JR, Cown DJ, Lee JR et al (2014) The influence of stem guying on radial growth, stem form and internal resin features in radiata pine. Trees 28:1197–1207

    Article  CAS  Google Scholar 

  • Morris DM, Forslund RR (1992) The relative importance of competition, microsite, and climate in controlling the stem taper and profile shape in jack pine. Can J For Res 22:1999–2003

    Article  Google Scholar 

  • Morris DM, Parker WH (1992) Variable-quality form in mature jack pine stands: quantification and relationship with environmental factors. Can J For Res 22:279–289

    Article  Google Scholar 

  • Muhairwe CK (1999) Taper equations for Eucalyptus pilularis and Eucalyptus grandis for the north coast in New South Wales, Australia. For Ecol Manag 113:251–269

    Article  Google Scholar 

  • Newberry JD, Burkhart HE (1986) Variable-form stem profile models for loblolly pine. Can J For Res 16:109–114

    Article  Google Scholar 

  • Newnham RM (1988) A variable-form taper equation. Information report PI-X-83, Petawawa National Forest Institute

    Google Scholar 

  • Nigh G, Smith W (2012) Effect of climate on lodgepole pine stem taper in British Columbia, Canada. Forestry 85:579–587

    Article  Google Scholar 

  • Niklas KJ (2013) Biophysical and size-dependent perspectives on plant evolution. J Exp Bot 64:4817–4827

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ, Spatz H-C (2000) Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels. Trees 14:230–237

    Article  Google Scholar 

  • Nilsson J, Karlberg A, Antti H et al (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ormerod DW (1973) A simple bole model. For Chron 49:136–138

    Article  Google Scholar 

  • Osawa A, Ishizuka M, Kanazawa Y (1991) A profile theory of tree growth. For Ecol Manag 41:33–63

    Article  Google Scholar 

  • Power H, Schneider R, Berninger F (2013) Understanding changes in black (Picea mariana) and white spruce (Picea glauca) foliage biomass and leaf area characteristics. Trees 28:345–357

    Article  Google Scholar 

  • Pressler MR (1865) Gesetz der Stammbildung und dessen forstwirthschaftliche Bedeutung insbesondere für den Waldbau höchsten reinertrago. Arnold Verlag, Leipzig

    Google Scholar 

  • Pretzsch H, Dauber E, Biber P (2013) Species-specific and ontogeny-related stem allometry of European forest trees: evidence from extensive stem analyses. For Sci 59:290–302

    Google Scholar 

  • Reed DD, Byrne JC (1985) A simple, variable form volume estimation system. For Chron 61:87–90

    Article  Google Scholar 

  • Régnière J, Saint-Amant R (2008) BioSIM 9: manuel de l’utilisateur. Centre de foresterie des Laurentides

    Google Scholar 

  • Régnière J, Cooke BJ, Bergeron V (1995) BioSIM: un instrument informatique d’aide à la décision pour la planification saisonnière de la lutte antiparasitaire. Guide d’utilisation

    Google Scholar 

  • Rennenberg H, Loreto F, Polle A et al (2006) Physiological responses of forest trees to heat and drought. Plant Biol 8:556–571

    Article  CAS  PubMed  Google Scholar 

  • Robitaille A, Saucier J-P, Chabot M et al (2015) An approach for assessing suitability for forest management based on constraints of the physical environment at a regional scale. Can J For Res 45:529–539

    Article  Google Scholar 

  • Rojo A, Perales X, Sánchez-Rodríguez F et al (2005) Stem taper functions for maritime pine ( Pinus pinaster Ait.) in Galicia (Northwestern Spain). Eur J For Res 124:177–186

    Article  Google Scholar 

  • Sattler DF, Comeau PG (2015) Crown allometry and application of the pipe model theory to white spruce (Picea glauca (Moench) Voss) and aspen (Populus tremuloides Michx.) in the western boreal forest of Canada. Can J For Res 46:262–273

    Article  Google Scholar 

  • Schneider R, Berninger F, Ung C-H et al (2011a) Within crown variation in the relationship between foliage biomass and sapwood area in jack pine. Tree Physiol 31:22–29

    Article  PubMed  Google Scholar 

  • Schneider R, Fortin M, Berninger F et al (2011b) Modeling Jack pine (Pinus banksiana) foliage density distribution. For Sci 57:180–188

    Google Scholar 

  • Schneider R, Fortin M, Saucier J-P (2013) Équations de défilement en forêt naturelle pour les principales essences commerciales du Québec. Mémoire de Recherche Forestière No. 168, Ministère des Ressources Naturelles, Direction de la Recherche Forestière, 34 pp

    Google Scholar 

  • Schneider R, Franceschini T, Fortin M, Saucier J-P (2018) Climate-induced changes in the stem form of 5 North American tree species. For Ecol Manag (in press). https://www.sciencedirect.com/science/article/pii/S0378112717315876

  • Schwarz F (1899) Physiologische Untersuchungen über Dickenwachstum und Holzqualität von Pinus silvestris. P. Parey, Berlin

    Google Scholar 

  • Sharma M, Oderwald RG (2001) Dimensionally compatible volume and taper equations. Can J For Res 31:797–803

    Article  Google Scholar 

  • Sharma M, Parton J (2009) Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis. For Sci 55:268–282

    Google Scholar 

  • Sharma M, Zhang SY (2004) Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. For Ecol Manag 198:39–53

    Article  Google Scholar 

  • Shinozaki K, Kyoji Y, Hozumi K, Kira T (1964) A quantitative analysis of plant form – pipe model theory I. Basic analyses. Jpn J Ecol 14:97–105

    Google Scholar 

  • Sievänen R, Nikinmaa E, Perttunen J (1997) Evaluation of importance of sapwood senescence on tree growth using the model Lignum. Silva Fenn 31:329–340

    Article  Google Scholar 

  • Slater D (2016) An argument against the axiom of uniform stress being applicable to trees. Arboric J 38:143–164

    Article  Google Scholar 

  • Smith DD, Sperry JS, Enquist BJ et al (2014) Deviation from symmetrically self-similar branching in trees predicts altered hydraulics, mechanics, light interception and metabolic scaling. New Phytol 201:217–229

    Article  PubMed  Google Scholar 

  • Temesgen H, Affleck D, Poudel K et al (2015) A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand J For Res 30:326–335

    Google Scholar 

  • Thomas CE, Parresol BR (1991) Simple, flexible, trigonometric taper equations. Can J For Res 21:1132–1137

    Article  Google Scholar 

  • Valentine HT (1988) A carbon-balance model of stand growth: a derivation employing pipe-model theory and the self-thinning rule. Ann Bot 62:389–396

    Article  Google Scholar 

  • Valentine HT (2001) Influence of vertical foliage structure on the distribution of stem cross-sectional area increment in western hemlock and balsam fir. For Sci 47:115–116

    Google Scholar 

  • Valentine HT, Mäkelä A, Green EJ et al (2012) Models relating stem growth to crown length dynamics: application to loblolly pine and Norway spruce. Trees 26:469–478

    Article  Google Scholar 

  • Weiskittel AR, Kershaw JA Jr, Hofmeyer PV, Seymour RS (2009) Species differences in total and vertical distribution of branch- and tree-level leaf area for the five primary conifer species in Maine, USA. For Ecol Manag 258:1695–1703

    Article  Google Scholar 

  • Weiskittel AR, MacFarlane DW, Radtke PJ et al (2015) A call to improve methods for estimating tree biomass for regional and national assessments. J For 113:414–424

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci 106:7040–7045

    Article  CAS  PubMed  Google Scholar 

  • Wiklund K, Konöpka B, Nilsson L-O (1995) Stem form and growth in Picea abies (L.) karst, in response to water and mineral nutrient availability. Scand J For Res 10:326–332

    Article  Google Scholar 

  • Williams GM, Nelson AS, Affleck DLR (2017) Vertical distribution of foliar biomass in western larch (Larix occidentalis). Can J For Res 48:42–57

    Article  Google Scholar 

  • Younger NL, Temesgen H, Garber SM (2008) Taper and volume responses of Douglas-fir to sulfur treatments for control of Swiss needle cast in the Coast Range of Oregon. West J Appl For 23:142–148

    Google Scholar 

  • Yu W, Benoit R, Girard C et al (2006) Wind Energy Simulation Toolkit (WEST): a wind mapping system for use by the wind-energy industry. Wind Eng 30:15–33

    Article  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Tony Franceschini for help finding some of the references and comments on an early draft of the manuscript. I would also like to thank Mélanie Desrochers of the Center for Forest Research (CEF-CFR) for the preparation of the map illustrated in Fig. 1. Finally, I would like to also thank the Forest Inventory Branch (Direction des inventaires forestiers) and the Forest Research Branch (Direction de la recherche forestiÒre) of the Quebec Ministry of Forests, Wildlife and Parks for the stem analysis database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schneider, R. (2018). Understanding the Factors Influencing Stem Form with Modelling Tools. In: Cánovas, F., Lüttge, U., Matyssek, R., Pretzsch, H. (eds) Progress in Botany Vol. 80. Progress in Botany, vol 80. Springer, Cham. https://doi.org/10.1007/124_2018_21

Download citation

Publish with us

Policies and ethics