Skip to main content

On the Elaborate Network of Thioredoxins in Higher Plants

  • Chapter
  • First Online:
Progress in Botany Vol. 80

Abstract

Thioredoxins represent ubiquitous small proteins acting as redox regulators of diverse metabolic and developmental processes in almost all organisms. These proteins contain highly conserved cysteines in their redox-active sites, which enable the modification of target enzyme conformation and activity by reversible thiol-disulfide exchanges. Since their discovery in plants around 40 years ago, the number of thioredoxin family members as well as the knowledge about their distinct functions are still increasing and under investigation. Originally, the first plant thioredoxin was found in chloroplasts, while further analyses demonstrated additional cytosolic, nuclear, mitochondrial, endomembrane, and non-photosynthetic plastid locations. This chapter provides an overview on the complexity of the thioredoxin family in higher plants and discusses its role in integrating metabolism, stress responses, development, and gene expression. This will help to understand why plants harbor the most versatile thioredoxin system among all organisms.

Communicated by Ulrich Lüttge

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACHT:

Atypical cysteine/histidine-rich thioredoxin

ADP:

Adenosine diphosphate

AGPase:

ADP-glucose pyrophosphorylase

AMP:

Adenosine monophosphate

AOX:

Alternative oxidase

APS:

AGPase small subunit

ATP:

Adenosine triphosphate

ATPase:

ATP synthase

CBC:

Calvin-Benson cycle

cDNA:

Complementary DNA

CDSP:

Chloroplastic drought-induced stress protein

CHLM:

Mg-protoporphyrin methyl transferase

CxxS:

Atypical thioredoxin h with cysteine-x-x-serine active site

Cys:

Cysteine

Cyt b6f:

Cytochrome b6f complex

DNA:

Deoxyribonucleic acid

ER:

Endoplasmic reticulum

FAD:

Flavin adenine dinucleotide

FBPase:

Fructose 1,6-bisphosphatase

FDX:

Ferredoxin

FNR:

Ferredoxin NADP+ reductase

FTR:

Ferredoxin thioredoxin reductase

FUM:

Fumarase

Gb:

Gossypium barbadense

GFP:

Green fluorescent protein

GGLC:

Glycine-glycine-leucine-cysteine motif

Gly:

Glycine

GRX:

Glutaredoxin

GSH:

Glutathione

HCF:

High-chlorophyll-fluorescence-mutant protein

HCGPC:

Histidine-cysteine-glycine-proline-cysteine motif

His:

Histidine

LOV:

Locus orchestrating victorin effects protein

Met:

Methionine

MSR:

Methionine sulfoxide reductase

NADP:

Nicotinamide adenine dinucleotide phosphate

NADP+-MDH:

NADP+-dependent malate dehydrogenase

NPQ:

Non-photochemical quenching

NPR:

Non-pathogenesis-related protein expressor

NRX:

Nucleoredoxin

NTR:

NADPH-dependent thioredoxin reductase

OAA:

Oxaloacetate

ox:

Oxidized

P:

Phosphate

PC:

Plastocyanin

PCNA:

Proliferating cell nuclear antigen

PGR:

Proton gradient regulation complex

Pi :

Inorganic phosphate

PPi :

Inorganic pyrophosphate

PQ:

Plastoquinon

PRK:

Phosphoribulokinase

protoMME:

Protomonomethylester

PRX:

Peroxiredoxin

PS:

Photosystem

Ps:

Pisum sativum

PsbS:

Photosystem II subunit S

qE:

Energy- or ΔpH-dependent quenching

RbcS :

Gene of the Rubisco small subunit

red:

Reduced

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

Rubisco:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

SAR:

Systemic acquired resistance

SBPase:

Sedoheptulose 1,7-bisphosphatase

SDH:

Succinate dehydrogenase

SP :

Peroxidatic cysteine residue

SR :

Resolving cysteine residue

SRX:

Sulfiredoxin

Ssb:

Single-stranded DNA binding protein

TCA:

Tricarboxylic acid

TDX:

Tetratricoredoxin

THL:

h-type thioredoxins in Brassica napus

TRX:

Thioredoxin

WCEVC:

Tryptophan-cysteine-glutamic acid-valine-cysteine motif

WCGPC:

Tryptophan-cysteine-glycine-proline-cysteine motif

WCRKC:

Atypical thioredoxin with tryptophan-cysteine-arginine-lysine-cysteine active site

YF:

Tyrosine-phenylalanine motif

References

  • Arscott LD, Gromer S, Schirmer RH et al (1997) The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc Natl Acad Sci U S A 94:3621–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arsova B, Hoja U, Wimmelbacher M et al (2010) Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22:1498–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballicora MA, Frueauf JB, Fu Y et al (2000) Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. J Biol Chem 275:1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Balmer Y, Vensel WH, Tanaka CK et al (2004) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci U S A 101:2642–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banze M, Follmann H (2000) Organelle-specific NADPH thioredoxin reductase in plant mitochondria. J Plant Physiol 156:126–129

    Article  CAS  Google Scholar 

  • Barranco-Medina S, Krell T, Bernier-Villamor L et al (2008) Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. J Exp Bot 59:3259–3269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartsch S, Monnet J, Selbach K, Quigley F, Gray J, von Wettstein D, Reinbothe S, Reinbothe C (2008) Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc Natl Acad Sci U S A 105:4933–4938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashandy T, Taconnat L, Renou J-P et al (2009) Accumulation of flavonoids in an ntra ntrb mutant leads to tolerance to UV-C. Mol Plant 2:249–258

    Article  CAS  PubMed  Google Scholar 

  • Bashandy T, Guilleminot J, Vernoux T et al (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22:376–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belin C, Bashandy T, Cela J et al (2015) A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana. Plant Cell Environ 38:299–314

    Article  CAS  PubMed  Google Scholar 

  • Benitez-Alfonso Y, Cilia M, San Roman A et al (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci U S A 106:3615–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal-Bayard P, Hervas M, Cejudo FJ et al (2012) Electron transfer pathways and dynamics of chloroplast NADPH-dependent thioredoxin reductase C (NTRC). J Biol Chem 287:33865–33872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal-Bayard P, Ojeda V, Hervas M et al (2014) Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x. FEBS Lett 588:4342–4347

    Article  CAS  PubMed  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984

    Article  CAS  PubMed  Google Scholar 

  • Bohrer A-S, Massot V, Innocenti G et al (2012) New insights into the reduction systems of plastidial thioredoxins point out the unique properties of thioredoxin z from Arabidopsis. J Exp Bot 63:6315–6323

    Article  CAS  PubMed  Google Scholar 

  • Bower MS, Matias DD, Fernandes-Carvalho E (1996) Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S locus receptor kinase. Plant Cell 8:1641–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breazale VD, Buchanan BB, Wolosiuk RA (1978) Chloroplast sedoheptulose 1,7-bisphosphatase: evidence for regulation by the ferredoxin/thioredoxin system. Z Naturforsch 33c:521–528

    Article  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31:341–374

    Article  CAS  Google Scholar 

  • Cabrillac D, Cock JM, Dumas C et al (2001) The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature 410:220–223

    Article  CAS  PubMed  Google Scholar 

  • Calderón A, Ortiz-Espín A, Iglesias-Fernández R et al (2017) Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture. Redox Biol 11:688–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrillo LR, Froehlich JE, Cruz JA et al (2016) Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. Plant J 87:654–663

    Article  CAS  PubMed  Google Scholar 

  • Cejudo FJ, Ferrandez J, Cano B et al (2012) The function of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system in plastid redox regulation and signalling. FEBS Lett 586:2974–2980

    Article  CAS  PubMed  Google Scholar 

  • Chae HB, Moon JC, Shin MR et al (2013) Thioredoxin reductase type C (NTRC) orchestrates enhanced thermotolerance to Arabidopsis by its redox-dependent holdase chaperone function. Mol Plant 6:323–336

    Article  CAS  PubMed  Google Scholar 

  • Chibani K, Tarrago L, Schürmann P et al (2011) Biochemical properties of poplar thioredoxin z. FEBS Lett 585:1077–1081

    Article  CAS  PubMed  Google Scholar 

  • Collin V, Issakidis-Bourguet E, Marchand C et al (2003) The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem 278:23747–23752

    Article  CAS  PubMed  Google Scholar 

  • Collin V, Lamkemeyer P, Miginiac-Maslow M et al (2004) Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiol 136:4088–4095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courteille A, Vesa S, Sanz-Barrio R et al (2013) Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Plant Physiol 161:508–520

    Article  CAS  PubMed  Google Scholar 

  • Da Q, Wang P, Wang M et al (2017) Thioredoxin and NADPH-dependent thioredoxin reductase C regulation of tetrapyrrole biosynthesis. Plant Physiol 175:652–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daloso DM, Müller K, Obata T et al (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci U S A 112:E1392–E1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangoor I, Peled-Zehavi H, Levitan A et al (2009) A small family of chloroplast atypical thioredoxins. Plant Physiol 149:1240–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliyahu E, Rog I, Inbal D et al (2015) ACHT4-driven oxidation of APS1 attenuates starch synthesis under low light intensity in Arabidopsis plants. Proc Natl Acad Sci U S A 112:12876–12881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Entus R, Poling M, Herrmann KM (2002) Redox regulation of Arabidopsis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. Plant Physiol 129:1866–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geigenberger P, Fernie A (2014) Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 21:1389–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot 56:1469–1479

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P, Thormählen I, Daloso DM et al (2017) The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci 22:249–262

    Article  CAS  PubMed  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 555:443–448

    Article  CAS  PubMed  Google Scholar 

  • Gelhaye E, Rouhier N, Gérard J et al (2004) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci U S A 101:14545–14550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  CAS  PubMed  Google Scholar 

  • Hertle AP, Blunder T, Wunder T et al (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Niazi AK, Young D et al (2017) Self-protection of Arabidopsis cytosolic malate dehydrogenase against oxidative stress. J Exp Bot. https://doi.org/10.1093/jxb/erx396

  • Ikegami A, Yoshimura N, Motohashi K et al (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282:19282–19291

    Article  CAS  PubMed  Google Scholar 

  • Ishiga Y, Ishiga T, Wangdi T et al (2012) NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. tomato disease development in tomato and Arabidopsis. Mol Plant-Microbe Interact 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Ishiga Y, Ishiga T, Ikeda Y et al (2016) NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species. Peer J 4:e1938

    Article  PubMed  CAS  Google Scholar 

  • Ivanov R, Gaude T (2009) Endocytosis and endosomal regulation of the S-receptor kinase during the self-incompatibility response in Brassica oleracea. Plant Cell 21:2107–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquot JP, Rivera-Madrid R, Marinho P et al (1994) Arabidopsis thaliana NAPHP thioredoxin reductase. cDNA characterization and expression of the recombinant protein in Escherichia coli. J Mol Biol 235:1357–1363

    Article  CAS  PubMed  Google Scholar 

  • Juárez-Díaz JA, McClure B, Vázquez-Santana S et al (2006) A novel thioredoxin h is secreted in Nicotiana alata and reduces S-RNase in vitro. J Biol Chem 281:3418–3424

    Article  PubMed  CAS  Google Scholar 

  • Kirchsteiger K, Pulido P, Gonzalez M et al (2009) NADPH thioredoxin reductase C controls the redox status of chloroplast 2-Cys peroxiredoxins in Arabidopsis thaliana. Mol Plant 2:298–307

    Article  CAS  PubMed  Google Scholar 

  • Kirchsteiger K, Ferrandez J, Pascual MB et al (2012) NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. Plant Cell 24:1534–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kneeshaw S, Gelineau S, Tada Y et al (2014) Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol Cell 56:153–162

    Article  CAS  PubMed  Google Scholar 

  • Kneeshaw S, Keyani R, Delorme-Hinoux V et al (2017) Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes. Proc Natl Acad Sci U S A 114:8414–8419

    Article  CAS  PubMed Central  Google Scholar 

  • Koh CS, Navrot N, Didierjean C et al (2008) An atypical catalytic mechanism involving three cysteines of thioredoxin. J Biol Chem 283:23062–23072

    Article  CAS  PubMed  Google Scholar 

  • Konrad A, Banze M, Follmann H (1996) Mitochondria of plant leaves contain two thioredoxins. Completion of the thioredoxin profile of higher plants. J Plant Physiol 149:317–321

    Article  CAS  Google Scholar 

  • Laloi C, Rayapuram N, Chartier Y et al (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci U S A 98:14144–14149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laloi C, Mestres-ortega D, Marco Y et al (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol 134:1006–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laughner BJ, Sehnke PC, Ferl RJ (1998) A novel nuclear member of the thioredoxin superfamily. Plant Physiol 118:987–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laugier E, Tarrago L, Courteille A et al (2013) Involvement of thioredoxin y2 in the preservation of leaf methionine sulfoxide reductase capacity and growth under high light. Plant Cell Environ 36:670–682

    Article  CAS  PubMed  Google Scholar 

  • Lee JR, Lee SS, Jang HH et al (2009) Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX. Proc Natl Acad Sci U S A 106:5978–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaire SD, Michelet L, Zaffagnini M et al (2007) Thioredoxins in chloroplasts. Curr Genet 51:343–365

    Article  CAS  PubMed  Google Scholar 

  • Lennartz K, Plücken H, Seidler A et al (2001) HCF164 encodes a thioredoxin-like protein involved in the biogenesis of the cytochrome b6f complex in Arabidopsis. Plant Cell 13:2539–2551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lepistö A, Kangasjarvi S, Luomala EM et al (2009) Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiol 149:1261–1276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lepistö A, Pakula E, Toivola J et al (2013) Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods. J Exp Bot 64:3843–3854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Nield J, Hayman D et al (1996) A self-fertile mutant of Phalaris produces an S protein with reduced thioredoxin activity. Plant J 10:505–513

    Article  CAS  PubMed  Google Scholar 

  • Li YB, Han LB, Wang HY et al (2016) The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton. Plant Physiol 170:2392–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichter A, Häberlein I (1998) A light-dependent redox signal participates in the regulation of ammonia fixation in chloroplasts of higher plants – ferredoxin: glutamate synthase is a thioredoxin-dependent enzyme. J Plant Physiol 153:83–90

    Article  CAS  Google Scholar 

  • Lorang J, Kidarsa T, Bradford CS et al (2012) Tricking the guard: exploiting plant defense for disease susceptibility. Science 338:659–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo T, Fan T, Liu Y et al (2012) Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol 159:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machida T, Ishibashi A, Kirino A et al (2012) Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris alleviates environmental stresses in yeast together with 2-Cys peroxiredoxin. PLoS One 7:e45988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchal C, Delorme-Hinoux V, Bariat L et al (2014) NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells. Mol Plant 7:30–44

    Article  CAS  PubMed  Google Scholar 

  • Marchand CH, Vanacker H, Collin V et al (2010) Thioredoxin targets in Arabidopsis roots. Proteomics 10:2418–2428

    Article  CAS  PubMed  Google Scholar 

  • Marri L, Zaffagnini M, Collin V et al (2009) Prompt and easy activation by specific thioredoxins of calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex. Mol Plant 2:259–269

    Article  CAS  PubMed  Google Scholar 

  • Martí MC, Olmos E, Calvete JJ et al (2009) Mitochondrial and nuclear localization of a novel pea thioredoxin: identification of its mitochondrial target proteins. Plant Physiol 150:646–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marty L, Siala W, Schwarzländer M et al (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 106:9109–9114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney DW, Buchanan BB, Wolosiuk RA (1978) Activation of chloroplast ATPase by reduced thioredoxin. Phytochemistry 17:794–795

    Article  CAS  Google Scholar 

  • Meng L, Wong JH, Feldman LJ et al (2010) A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci U S A 107:3900–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer Y, Reichheld J-P, Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photosynth Res 86:419–433

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y, Riondet C, Constans L et al (2006) Evolution of redoxin genes in the green lineage. Photosynth Res 89:179–192

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y, Belin C, Delorme-Hinoux V et al (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17:1124–1160

    Article  CAS  PubMed  Google Scholar 

  • Michalska J, Zauber H, Buchanan BB et al (2009) NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc Natl Acad Sci U S A 106:9908–9913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen R, Mutenda KE, Mant A et al (2005) α-Glucan, water dikinase (GWD): a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proc Natl Acad Sci U S A 102:1785–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon JC, Jang HH, Chae HB et al (2006) The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts. Biochem Biophys Res Commun 348:478–484

    Article  CAS  PubMed  Google Scholar 

  • Motohashi K, Hisabori T (2006) HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. J Biol Chem 281:35039–35047

    Article  CAS  PubMed  Google Scholar 

  • Najera VA, Gonzalez MC, Perez-Ruiz JM et al (2017) An event of alternative splicing affects the expression of the NTRC gene, encoding NADPH-thioredoxin reductase C, in seed plants. Plant Sci 258:21–28

    Article  CAS  PubMed  Google Scholar 

  • Naranjo B, Diaz-Espejo A, Lindahl M et al (2016a) Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana. J Exp Bot 67:1951–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naranjo B, Mignee C, Krieger-Liszkay A et al (2016b) The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant Cell Environ 39:804–822

    Article  CAS  PubMed  Google Scholar 

  • Navrot N, Collin V, Gualberto J et al (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Née G, Zaffagnini M, Trost P et al (2009) Redox regulation of chloroplastic glucose-6-phosphate dehydrogenase: a new role for f-type thioredoxin. FEBS Lett 583:2827–2832

    Article  PubMed  CAS  Google Scholar 

  • Nikkanen L, Toivola J, Rintamäki E (2016) Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant Cell Environ 39:804–822

    Article  CAS  Google Scholar 

  • Ojeda V, Perez-Ruiz JM, Gonzalez MC et al (2017) NADPH thioredoxin reductase C and thioredoxins act concertedly in seedling development. Plant Physiol 174:1436–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okegawa Y, Motohashi K (2015) Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. Plant J 84:900–913

    Article  CAS  PubMed  Google Scholar 

  • Park SK, Jung YJ, Lee JR et al (2009) Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol 150:552–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual MB, Mata-Cabana A, Florencio FJ et al (2010) Overoxidation of 2-Cys peroxiredoxin in prokaryotes: cyanobacterial 2-Cys peroxiredoxins sensitive to oxidative stress. J Biol Chem 285:34485–34492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual MB, Mata-Cabana A, Florencio FJ et al (2011) A comparative analysis of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system from plants and cyanobacteria. Plant Physiol 155:1806–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Ruiz JM, Cejudo FJ (2009) A proposed reaction mechanism for rice NADPH thioredoxin reductase C, an enzyme with protein disulfide reductase activity. FEBS Lett 583:1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Perez-Ruiz JM, Spinola MC, Kirchsteiger K et al (2006) Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell 18:2356–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Ruiz JM, Guinea M, Puerto-Galan L et al (2014) NADPH thioredoxin reductase C is involved in redox regulation of the Mg-chelatase I subunit in Arabidopsis thaliana chloroplasts. Mol Plant 7:1252–1255

    Article  CAS  PubMed  Google Scholar 

  • Perez-Ruiz JM, Naranjo B, Ojeda V et al (2017) NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proc Natl Acad Sci U S A 114:12069–12074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins A, Nelson KJ, Parsonage D et al (2015) Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puerto-Galan L, Perez-Ruiz JM, Ferrandez J et al (2013) Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide. Front Plant Sci 4:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Puerto-Galan L, Perez-Ruiz JM, Guinea M et al (2015) The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts. J Exp Bot 66:2957–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido P, Cazalis R, Cejudo FJ (2009) An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. Plant J 57:132–145

    Article  CAS  PubMed  Google Scholar 

  • Pulido P, Spinola MC, Kirchsteiger K et al (2010) Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. J Exp Bot 61:4043–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Leydon AR, Manziello A et al (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 8:e1000621

    Article  CAS  Google Scholar 

  • Reichheld J-P, Mestres-Ortega D, Laloi C et al (2002) The multigenic family of thioredoxin h in Arabidopsis thaliana: specific expression and stress response. Plant Physiol Biochem 40:685–690

    Article  CAS  Google Scholar 

  • Reichheld J-P, Meyer E, Khafif M et al (2005) AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana. FEBS Lett 579:337–342

    Article  CAS  PubMed  Google Scholar 

  • Reichheld J-P, Khafif M, Riondet C et al (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19:1851–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey P, Pruvot G, Becuwe N et al (1998) A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants. Plant J 13:97–107

    Article  CAS  PubMed  Google Scholar 

  • Rey P, Cuine S, Eymery F et al (2005) Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant J 41:31–42

    Article  CAS  PubMed  Google Scholar 

  • Richter AS, Peter E, Rothbart M et al (2013) Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. Plant Physiol 162:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera-Madrid R, Mestres D, Marinho P et al (1995) Evidence for five divergent thioredoxin h sequences in Arabidopsis thaliana. Proc Natl Acad Sci U S A 92:5620–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahrawy M, Hecht V, Lopez-Jaramillo J et al (1996) Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. J Mol Evol 42:422–431

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Riego AM, Mata-Cabana A, Galmozzi CV et al (2016) NADPH-thioredoxin reductase C mediates the response to oxidative stress and thermotolerance in the cyanobacterium Anabaena sp. PCC7120. Front Microbiol 7:1283

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanz-Barrio R, Corral-Martinez P, Ancin M et al (2013) Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. Plant Biotechnol J 11:618–627

    Article  CAS  PubMed  Google Scholar 

  • Sarkar N, Lemaire S, Wu-Scharf D et al (2005) Functional specialization of Chlamydomonas reinhardtii cytosolic thioredoxin h1 in the response to alkylation induced DNA damage. Eukaryot Cell 4:262–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki Y, Kozaki A, Hatano M (1997) Link between light and fatty acid synthesis: thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proc Natl Acad Sci U S A 94:11096–11101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheibe R, Anderson LE (1981) Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast. Biochim Biophys Acta 636:58–64

    Article  CAS  PubMed  Google Scholar 

  • Schmidtmann E, König AC, Orwat A et al (2014) Redox regulation of Arabidopsis mitochondrial citrate synthase. Mol Plant 7:156–169

    Article  CAS  PubMed  Google Scholar 

  • Schürmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1274

    Article  PubMed  Google Scholar 

  • Serrato AJ, Cejudo FJ (2003) Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta 217:392–399

    Article  CAS  PubMed  Google Scholar 

  • Serrato AJ, Crespo JL, Florencio FJ et al (2001) Characterization of two thioredoxins h with predominant localization in the nucleus of aleurone and scutellum cells of germinating wheat seeds. Plant Mol Biol 46:361–371

    Article  CAS  PubMed  Google Scholar 

  • Serrato AJ, Perez-Ruiz JM, Cejudo FJ (2002) Cloning of thioredoxin h reductase and characterization of the thioredoxin reductase-thioredoxin h system from wheat. Biochem J 367:491–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrato AJ, Perez-Ruiz JM, Spinola MC et al (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821–43827

    Article  CAS  PubMed  Google Scholar 

  • Serrato AJ, Guilleminot J, Meyer Y et al (2008) AtCXXS: atypical members of the Arabidopsis thaliana thioredoxin h family with a remarkably high disulfide isomerase activity. Physiol Plant 133:611–622

    Article  CAS  PubMed  Google Scholar 

  • Seung D, Thalmann M, Sparla F et al (2013) Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic α-amylase. J Biol Chem 288:33620–33633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver DM, Silva LP, Issakidis-Bourguet E et al (2013) Insight into the redox regulation of the phosphoglucan phosphatase SEX4 involved in starch degradation. FEBS J 280:538–548

    Article  CAS  PubMed  Google Scholar 

  • Skryhan K, Cuesta-Seijo JA, Nielsen MM et al (2015) The role of cysteine residues in redox regulation and protein stability of Arabidopsis thaliana starch synthase 1. PLoS One 10:e0136997

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparla F, Costa A, Lo Schiavo F et al (2006) Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol 141:840–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweat TA, Wolpert TJ (2007) Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis. Plant Cell 19:673–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K et al (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Tarrago L, Laugier E, Zaffagnini M et al (2010) Plant thioredoxin CDSP32 regenerates 1-Cys methionine sulfoxide reductase B activity through the direct reduction of sulfenic acid. J Biol Chem 285:14964–14972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thormählen I, Ruber J, von Roepenack-Lahaye E et al (2013) Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis thaliana. Plant Cell Environ 36:16–29

    Article  PubMed  CAS  Google Scholar 

  • Thormählen I, Meitzel T, Groysman J et al (2015) Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiol 169:1766–1786

    PubMed  PubMed Central  Google Scholar 

  • Thormählen I, Zupok A, Rescher J et al (2017) Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light. Mol Plant 10:168–182

    Article  PubMed  CAS  Google Scholar 

  • Toivola J, Nikkanen L, Dahlstrom KM et al (2013) Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains. Front Plant Sci 4:389

    Article  PubMed  PubMed Central  Google Scholar 

  • Traverso JA, Micalella C, Martinez A et al (2013) Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study. Plant Cell 25:1056–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valerio C, Costa A, Marri L et al (2011) Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot 62:545–555

    Article  CAS  PubMed  Google Scholar 

  • Vieira Dos Santos C, Laugier E, Tarrago L et al (2007) Specificity of thioredoxins and glutaredoxins as electron donors to two distinct classes of Arabidopsis plastidial methionine sulfoxide reductases B. FEBS Lett 581:4371–4376

    Article  CAS  PubMed  Google Scholar 

  • Vignols F, Mouaheb N, Thomas D et al (2003) Redox control of Hsp70-Co-chaperone interaction revealed by expression of a thioredoxin-like Arabidopsis protein. J Biol Chem 278:4516–4523

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Liu J, Liu B et al (2013) Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. Plant Physiol 163:1710–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CH, Arscott LD, Muller S et al (2000) Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem 267:6110–6117

    Article  CAS  PubMed  Google Scholar 

  • Wimmelbacher M, Börnke F (2014) Redox activity of thioredoxin z and fructokinase-like protein 1 is dispensable for autotrophic growth of Arabidopsis thaliana. J Exp Bot 65:2405–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolosiuk RA, Buchanan BB (1977) Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266:565–567

    Article  CAS  Google Scholar 

  • Wolosiuk RA, Buchanan BB, Crawford NA (1977) Regulation of NADP-malate dehydrogenase by the light-actuated ferredoxin/thioredoxin system of chloroplasts. FEBS Lett 81:253–258

    Article  CAS  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653

    Article  CAS  PubMed  Google Scholar 

  • Wulff RP, Lundqvist J, Rutsdottir G et al (2011) The activity of barley NADPH-dependent thioredoxin reductase C is independent of the oligomeric state of the protein: tetrameric structure determined by cryo-electron microscopy. Biochemist 50:3713–3723

    Article  CAS  Google Scholar 

  • Yamamoto M, Nasrallah JB (2009) In planta assessment of the role of thioredoxin h proteins in the regulation of S-locus receptor kinase signaling in transgenic Arabidopsis. Plant Physiol 163:1387–1395

    Article  CAS  Google Scholar 

  • Yamaryo Y, Motohashi K, Takamiya K et al (2006) In vitro reconstitution of monogalactosyldiacylglycerol (MGDG) synthase regulation by thioredoxin. FEBS Lett 580:4086–4090

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Hisabori T (2014) Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis. Front Environ Sci 2:38

    Article  Google Scholar 

  • Yoshida K, Hisabori T (2016a) Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana. Biochim Biophys Acta 1857:810–818

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Hisabori T (2016b) Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proc Natl Acad Sci U S A 113:E3967–E3976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Noguchi K, Motohashi K et al (2013) Systematic exploration of thioredoxin target proteins in plant mitochondria. Plant Cell Physiol 54:875–892

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Hara S, Hisabori T (2015) Thioredoxin selectivity for thiol-based redox regulation of target proteins in chloroplasts. J Biol Chem 290:14278–14288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Thormählen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thormählen, I., Naranjo, B., Trujillo-Hernandez, J.A., Reichheld, JP., Cejudo, F.J., Geigenberger, P. (2018). On the Elaborate Network of Thioredoxins in Higher Plants. In: Cánovas, F., Lüttge, U., Matyssek, R., Pretzsch, H. (eds) Progress in Botany Vol. 80. Progress in Botany, vol 80. Springer, Cham. https://doi.org/10.1007/124_2018_16

Download citation

Publish with us

Policies and ethics