Skip to main content

Background Insect Herbivory: Impacts, Patterns and Methodology

  • Chapter
  • First Online:
Book cover Progress in Botany Vol. 79

Part of the book series: Progress in Botany ((BOTANY,volume 79))

Abstract

Plants provide humans with oxygen, food, fibre and fuel, but their effectiveness in performing these roles is affected by herbivores. Historically, studies on insect herbivory have primarily addressed pest outbreaks, which have indisputable ecological and economic consequences. By contrast, less attention has been paid to background (‘normal’) insect herbivory (BIH), which inflicts minor damage but acts on plants continuously. In this review, we introduce BIH as a phenomenon of great ecological and evolutionary importance, summarize the current knowledge regarding the levels and patterns of BIH and the effects of BIH on individual plants, plant communities and ecosystem-level processes, and discuss the methodology of studies addressing BIH. In the long term, global terrestrial net primary production (NPP) is more strongly affected by BIH than by the outbreaks of eruptive insect species. Plant responses to BIH differ from their responses to severe damage, and abiotic drivers of global change may have different effects on background versus outbreak herbivory. Minor changes in BIH caused by human activities may have profound but imperfectly understood consequences for the structure and functions of terrestrial ecosystems. This justifies the urgent need to move the focus away from rare bouts of severe plant damage by insects to the ubiquitous phenomenon of BIH in ecosystem-level studies and away from episodic major damage to chronic minor damage in studies of plant–herbivore interactions.

Communicated by Rainer Matyssek

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdala-Roberts L, Mooney KA, Quijano-Medina T et al (2015) Comparison of tree genotypic diversity and species diversity effects on different guilds of insect herbivores. Oikos 124:1527–1535

    Article  Google Scholar 

  • Agrawal A, Weber M (2015) On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. Ecol Lett 18:985–991

    Article  PubMed  Google Scholar 

  • Aide TM (1993) Patterns of leaf development and herbivory in a tropical understory community. Ecology 74:455–466

    Article  Google Scholar 

  • Altamirano A, Valladares G, Kuzmanich N et al (2016) Galling insects in a fragmented forest: incidence of habitat loss, edge effects and plant availability. J Insect Conserv 20:119–127

    Article  Google Scholar 

  • Andrew NR, Hughes L (2005a) Herbivore damage along a latitudinal gradient: relative impacts of different feeding guilds. Oikos 108:176–182

    Article  Google Scholar 

  • Andrew NR, Hughes L (2005b) Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change. Glob Ecol Biogeogr 14:249–262

    Article  Google Scholar 

  • Anstett DN, Nunes KA, Baskett C et al (2016) Sources of controversy surrounding latitudinal patterns in herbivory and defense. Trends Ecol Evol 31:789–802

    Article  PubMed  Google Scholar 

  • Anttonen S, Piispanen R, Ovaska J et al (2002) Effects of defoliation on growth, biomass allocation, and wood properties of Betula pendula clones grown at different nutrient levels. Can J For Res 32:498–508

    Article  Google Scholar 

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263–286

    Article  CAS  PubMed  Google Scholar 

  • Bach CE (2001) Long-term effects of insect herbivory on responses by Salix cordata to sand accretion. Ecology 82:397–409

    Article  Google Scholar 

  • Bagchi R, Gallery RE, Gripenberg S et al (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88

    Article  CAS  PubMed  Google Scholar 

  • Balciunas JK, Burrows DW (1993) The rapid suppression of the growth of Melaleuca quinquenervia saplings in Australia by insects. J Aquat Plant Manag 31:265–270

    Google Scholar 

  • Baldwin IT (1990) Herbivory simulations in ecological research. Trends Ecol Evol 5:91–93

    Article  CAS  PubMed  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • Basset Y (1991) The spatial distribution of herbivory, mines and galls within an Australian rain-forest tree. Biotropica 23:271–281

    Article  Google Scholar 

  • Belovsky GE, Slade JB (2000) Insect herbivory accelerates nutrient cycling and increases plant production. Proc Natl Acad Sci U S A 97:14412–14417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belskaya EA, Vorobeichik EL (2013) Responses of leaf-eating insects feeding on aspen to emissions from the Middle Ural copper smelter. Russ J Ecol 44:108–117

    Article  Google Scholar 

  • Berryman AA (1987) The theory and classification of outbreaks. In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic, San Diego, CA, pp 3–30

    Chapter  Google Scholar 

  • Bigger DS, Marvier MA (1998) How different would a world without herbivory be? A search for generality in ecology. Integr Biol 1:60–67

    Article  Google Scholar 

  • Björkman C, Dalin P, Ahrné K (2008) Leaf trichome responses to herbivory in willows: induction, relaxation and costs. New Phytol 179:176–184

    Article  PubMed  Google Scholar 

  • Björkman C, Berggren A, Bylund H (2011) Causes behind insect folivory patterns in latitudinal gradients. J Ecol 99:367–369

    PubMed  PubMed Central  Google Scholar 

  • Blundell AG, Peart DR (2000) High abscission rates of damaged expanding leaves: field evidence from seedlings of a Bornean rain forest tree. Am J Bot 87:1693–1698

    Article  CAS  PubMed  Google Scholar 

  • Böhm SM, Wells K, Kalko EKV (2011) Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur). PLoS One 6:e17857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bommarco R, Banks JE (2003) Scale as a modifier in vegetation diversity experiments: effects on herbivores and predators. Oikos 102:440–448

    Article  Google Scholar 

  • Brown VK, Gange AC (1989) Differential effects of above-ground and below-ground insect herbivory during early plant succession. Oikos 54:67–76

    Article  Google Scholar 

  • Brown VK, Gange AC (1990) Insect herbivory below ground. Adv Ecol Res 20:1–58

    Article  Google Scholar 

  • Cabrera HM, Argandona VH, Corcuera LJ (1994) Metabolic changes in barley seedlings at different aphid infestation levels. Phytochemistry 35:317–319

    Article  CAS  Google Scholar 

  • Cárdenas RE, Valencia R, Kraft NJB et al (2014) Plant traits predict inter- and intraspecific variation in susceptibility to herbivory in a hyperdiverse Neotropical rain forest tree community. J Ecol 102:939–952

    Article  Google Scholar 

  • Castagneyrol B, Giffard B, Péré C, Jactel H (2013) Plant apparency, an overlooked driver of associational resistance to insect herbivory. J Ecol 101:418–429

    Article  Google Scholar 

  • Castagneyrol B, Jactel H, Vacher C et al (2014) Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J Appl Ecol 51:134–141

    Article  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chown SL, Sinclair BJ, Leinaas HP et al (2004) Hemispheric asymmetries in biodiversity – a serious matter for ecology. PLoS Biol 2:1701–1707 (e406)

    Article  CAS  Google Scholar 

  • Coley PD (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53:209–233

    Article  Google Scholar 

  • Coley PD, Aide TM (1991) Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, NY, pp 25–49

    Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Coupe MD, Cahill JF (2003) Effects of insects on primary production in temperate herbaceous communities: a meta-analysis. Ecol Entomol 28:511–521

    Article  Google Scholar 

  • Couture JJ, Meehan TD, Kruger EL, Lindroth RL (2015) Insect herbivory alters impact of atmospheric change on northern temperate forests. Nat Plants 1:15016

    Article  CAS  PubMed  Google Scholar 

  • Crawley MJ (1983) Herbivory: the dynamics of animal–plant interactions. Blackwell, Oxford

    Google Scholar 

  • Crawley MJ (1985) Reduction of oak fecundity by low-density herbivore populations. Nature 314:163–164

    Article  Google Scholar 

  • Crawley MJ (1989) Insect herbivores and plant population dynamics. Annu Rev Entomol 34:531–564

    Article  Google Scholar 

  • Cronin JP, Tonsor SJ, Carson WP (2010) A simultaneous test of trophic interaction models: which vegetation characteristic explains herbivore control over plant community mass? Ecol Lett 13:202–212

    Article  PubMed  Google Scholar 

  • Cuevas-Reyes P, Gilberti L, González-Rodríguez A, Fernandes GW (2013) Patterns of herbivory and fluctuating asymmetry in Solanum lycocarpum St. Hill (Solanaceae) along an urban gradient in Brazil. Ecol Ind 24:557–561

    Article  Google Scholar 

  • Cyr H, Pace ML (1993) Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361:148–150

    Article  Google Scholar 

  • Damien M, Jactel H, Meredieu C et al (2016) Pest damage in mixed forests: disentangling the effects of neighbor identity, host density and host apparency at different spatial scales. For Ecol Manag 378:103–110

    Article  Google Scholar 

  • Davidson CB, Johnson JE, Gottschalk KW, Amateis RL (2001) Prediction of stand susceptibility and gypsy moth defoliation in coastal plain mixed pine-hardwoods. Can J For Res 31:1914–1921

    Google Scholar 

  • DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR (2012) Climate change: resetting plant–insect interactions. Plant Physiol 160:1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dukes JS, Pontius J, Orwig D et al (2009) Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Can J For Res 39:231–248

    Article  Google Scholar 

  • Dunn RR, Agosti D, Andersen AN et al (2009) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol Lett 12:324–333

    Article  PubMed  Google Scholar 

  • Endara MJ, Coley PD (2011) The resource availability hypothesis revisited: a meta-analysis. Funct Ecol 25:389–398

    Article  Google Scholar 

  • Faeth SH (1987) Community structure and folivorous insect outbreaks: the roles of vertical and horizontal interactions. In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic, San Diego, CA, pp 135–171

    Chapter  Google Scholar 

  • Feeny P (1976) Plant apparency and chemical defense. Recent Adv Phytochem 10:1–40

    CAS  Google Scholar 

  • Führer E (1985) Air pollution and the incidence of forest insect problems. Z Angew Entomol 99:371–377

    Article  Google Scholar 

  • Garibaldi LA, Kitzberger T, Ruggiero A (2011) Latitudinal decrease in folivory within Nothofagus pumilio forests: dual effect of climate on insect density and leaf traits? Glob Ecol Biogeogr 20:609–619

    Article  Google Scholar 

  • Gherlenda AN, Moore BD, Haigh AM et al (2016) Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO2 enrichment. BMC Ecol 16:art 47

    Article  Google Scholar 

  • Godfray HCJ (1985) The absolute abundance of leaf miners on plants of different successional stages. Oikos 45:17–25

    Article  Google Scholar 

  • Guimarães CDDC, Viana JPR, Cornelissen T (2014) A meta-analysis of the effects of fragmentation on herbivorous insects. Environ Entomol 43:537–545

    Article  Google Scholar 

  • Guyot V, Castagneyrol B, Vialatte A et al (2016) Tree diversity reduces pest damage in mature forests across Europe. Biol Lett 12:20151037

    Article  PubMed  PubMed Central  Google Scholar 

  • Haase J, Castagneyrol B, Cornelissen JHC et al (2015) Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos 124:1674–1685

    Article  Google Scholar 

  • Hawkes CV, Sullivan JJ (2001) The impact of herbivory on plants in different resource conditions: a meta-analysis. Ecology 82:2045–2058

    Article  Google Scholar 

  • Haynes KJ, Allstadt AJ, Klimetzek D (2014) Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests. Glob Chang Biol 20:2004–2018

    Article  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants – to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Hodkinson ID, Hughes MK (1982) Insect herbivory. Chapman and Hall, London/New York, NY

    Book  Google Scholar 

  • Hoogesteger J, Karlsson PS (1992) Effects of defoliation on radial stem growth and photosynthesis in the mountain birch (Betula pubescens ssp. tortuosa). Funct Ecol 6:317–323

    Article  Google Scholar 

  • Hunter MD (2001) Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric For Entomol 3:77–84

    Article  Google Scholar 

  • Hysell MT, Wagner MR, Grier CC (1996) Pattern of herbivore abundance along a climatic gradient: guild shift of leaf-feeding insects and changes in leaf characteristics. Environ Entomol 25:977–982

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution from working group I to the third assessment report of the intergovernmental panel for climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson DM, Büntgen U, Frank DC et al (2010) Climatic warming disrupts recurrent alpine insect outbreaks. Proc Natl Acad Sci U S A 107:20576–22058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SN, Erb M, Hartley SE (2016) Roots under attack: contrasting plant responses to below- and aboveground insect herbivory. New Phytol 210:413–418

    Article  PubMed  Google Scholar 

  • Jönsson AM, Schroeder LM, Lagergren F et al (2012) Guess the impact of Ips typographus – an ecosystem modelling approach for simulating spruce bark beetle outbreaks. Agric For Meteorol 166:188–200

    Article  Google Scholar 

  • Kaakeh W, Pfeiffer DG, Marini RP (1992) Combined effects of spirea aphid (Homoptera, Aphididae) and nitrogen fertilization on net photosynthesis, total chlorophyll content, and greenness of apple leaves. J Econ Entomol 85:939–946

    Article  Google Scholar 

  • Kahl J, Siemens DH, Aerts RJ et al (2000) Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210:336–342

    Article  CAS  PubMed  Google Scholar 

  • Kaitaniemi P, Ruohomäki K (2006) Uncaged larvae elicit a combination of local and integrated growth responses within mountain birch crown. Oikos 115:537–548

    Article  Google Scholar 

  • Kaplan I, Halitschke R, Kessler A et al (2008) Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89:392–406

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago, IL/London

    Book  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Kissling WD, Dormann CF, Groeneveld J et al (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J Biogeogr 39:2163–2178

    Article  Google Scholar 

  • Kneeshaw D, Sturtevant BR, Cooke B et al (2015) Insect disturbances in forest ecosystems. In: Peh KS-H, Corlett RT, Bergeron Y (eds) Routledge handbook of forest ecology. Routledge, London/New York, NY, pp 93–113

    Google Scholar 

  • Knepp RG, Hamilton JG, Mohan JE et al (2005) Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol 167:207–218

    Article  CAS  PubMed  Google Scholar 

  • Komonen A, Kouki J (2008) Do restoration fellings in protected forests increase the risk of bark beetle damages in adjacent forests? A case study from Fennoscandian boreal forest. For Ecol Manag 255:3736–3743

    Article  Google Scholar 

  • Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koricheva J (2002) Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology 83:176–190

    Article  Google Scholar 

  • Koricheva J, Vehvilainen H, Riihimaki J et al (2006) Diversification of tree stands as a means to manage pests and diseases in boreal forests: myth or reality? Can J For Res 36:324–336

    Article  Google Scholar 

  • Kozlov MV (1985) Changes in phytophagous insect communities affected by airborne pollutants near the non-ferrous smelter. In: Kastrel TN (ed) Problems of biosphere (information bulletin), vol 11. Scientific Board on Biosphere Problems, Academy of Sciences, Moscow, pp 76–90 (in Russian)

    Google Scholar 

  • Kozlov MV (2008) Losses of birch foliage along geographical gradients in Northern and Central Europe: a climate-driven pattern? Clim Change 87:107–117

    Article  Google Scholar 

  • Kozlov MV (2015) Insect herbivory on two willow species in northern Europe is independent of pollution load. Boreal Environ Res 20:423–430

    Google Scholar 

  • Kozlov MV, Klemola T (2017) Hemispheric asymmetries in herbivory: do they exist? J Ecol (in press)

    Google Scholar 

  • Kozlov MV, Zvereva EL (2014) Variations in the effects of local foliar damage on life span of individual leaves of downy birch (Betula pubescens). Botany 92:477–484

    Article  Google Scholar 

  • Kozlov MV, Zvereva EL (2015) Changes in the background losses of woody plant foliage to insects during the past 60 years: are the predictions fulfilled? Biol Lett 11:20150480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kozlov MV, Zvereva EL, Zverev V (2009) Impacts of point polluters on terrestrial biota: comparative analysis of 18 contaminated areas. Springer, Dordrecht

    Book  Google Scholar 

  • Kozlov MV, Lanta V, Zverev VE, Zvereva EL (2012) Delayed local responses of downy birch to damage by leafminers and leafrollers. Oikos 121:428–434

    Article  Google Scholar 

  • Kozlov MV, van Nieukerken EJ, Zverev V, Zvereva EL (2013) Abundance and diversity of birch-feeding leafminers along latitudinal gradients in northern Europe. Ecography 36:1138–1149

    Article  Google Scholar 

  • Kozlov MV, Zverev V, Zvereva EL (2014) Confirmation bias leads to overestimation of losses of woody plant foliage to insect herbivores in tropical regions. PeerJ 2:e798

    Article  Google Scholar 

  • Kozlov MV, Stekolshchikov AV, Soderman G et al (2015a) Sap-feeding insects on forest trees along latitudinal gradients in northern Europe: a climate-driven patterns. Glob Chang Biol 21:106–116

    Article  PubMed  Google Scholar 

  • Kozlov MV, Lanta V, Zverev V, Zvereva EL (2015b) Global patterns in background losses of woody plant foliage to insects. Glob Ecol Biogeogr 24:1126–1135

    Article  Google Scholar 

  • Kozlov MV, Lanta V, Zverev V, Zvereva EL (2015c) Background losses of woody plant foliage to insects show variable relationships with plant functional traits across the globe. J Ecol 103:1519–1528

    Article  Google Scholar 

  • Kozlov MV, Filippov BY, Zubrij NA, Zverev V (2015d) Abrupt changes in invertebrate herbivory on woody plants at the forest-tundra ecotone. Polar Biol 38:967–974

    Article  Google Scholar 

  • Kozlov MV, Zverev V, Zvereva EL (2016a) Shelters of leaf-tying herbivores decompose faster than untied leaves damaged by free-living insects. Sci Total Environ 568:946–951

    Article  CAS  PubMed  Google Scholar 

  • Kozlov MV, Skoracka A, Zverev V, Lewandowski M, Zvereva EL (2016b) Two birch species demonstrate opposite latitudinal patterns in infestation by gall-making mites in Northern Europe. PLoS One 11(11):e0166641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kozlov MV, Lanta V, Zverev V et al (2017) Decreased losses of woody plant foliage to insects in large urban areas are explained by bird predation. Glob Chang Biol 23 (in press)

    Google Scholar 

  • Labandeira CC (2012) Evidence for outbreaks from the fossil record of insect herbivory. In: Barbosa P, Letourneau DK, Agrawal A (eds) Insect outbreaks revisited. Wiley-Blackwell, Chichester, pp 269–290

    Google Scholar 

  • Lamarre GPA, Baraloto C, Fortunel C et al (2012) Herbivory, growth rates, and habitat specialization in tropical tree lineages: implications for Amazonian beta-diversity. Ecology 93:S195–S210

    Article  Google Scholar 

  • Lawton JH, McNeill S (1979) Between the devil and the deep blue sea: on the problem of being a herbivore. In: Anderson RM, Turner BD, Taylor LR (eds) Population dynamics. Blackwell, Oxford, pp 223–244

    Google Scholar 

  • Lehndal L, Agren J (2015) Herbivory differentially affects plant fitness in three populations of the perennial herb Lythrum salicaria along a latitudinal gradient. PLoS One 10:e0135939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lempa K, Agrawal AA, Salminen JP et al (2004) Rapid herbivore-induced changes in mountain birch phenolics and nutritive compounds and their effects on performance of the major defoliator, Epirrita autumnata. J Chem Ecol 30:303–321

    Article  CAS  PubMed  Google Scholar 

  • Levey DJ, Caughlin TT, Brudvig LA et al (2016) Disentangling fragmentation effects on herbivory in understory plants of longleaf pine savannah. Ecology 97:2248–2258

    Article  PubMed  Google Scholar 

  • Lim JY, Fine PVA, Mittelbach GG (2015) Assessing the latitudinal gradient in herbivory. Glob Ecol Biogeogr 24:1106–1112

    Article  Google Scholar 

  • Lincoln DE, Fajer ED, Johnson RH (1993) Plant-insect herbivore interactions in elevated CO2 environments. Trends Ecol Evol 8:64–68

    Article  CAS  PubMed  Google Scholar 

  • Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709

    Article  Google Scholar 

  • Lindroth RL (2012) Atmospheric change, plant secondary metabolites and ecological interactions. In: Iason GR, Dicke M, Hartley SE (eds) The ecology of plant secondary metabolites: from genes to global processes. Cambridge University Press, Cambridge, pp 120–153

    Chapter  Google Scholar 

  • Linhart YB (1991) Disease, parasitism and herbivory: multidimensional challenges in plant evolution. Trends Ecol Evol 6:392–396

    Article  CAS  PubMed  Google Scholar 

  • Logan JA, Regniere J, Powell JA (2003) Assessing the impacts of global warming on forest pest dynamics. Front Ecol Environ 1:130–137

    Article  Google Scholar 

  • Lovett GM, Christenson LM, Groffman PM et al (2002) Insect defoliation and nitrogen cycling in forests. Bioscience 52:335–342

    Article  Google Scholar 

  • Markkola A, Kuikka K, Rautio P et al (2004) Defoliation increases carbon limitation in ectomycorrhizal symbiosis of Betula pubescens. Oecologia 140:234–240

    Article  PubMed  Google Scholar 

  • Marquis RJ (1992) A bite is a bite is a bite – constraints on response to folivory in Piper arieianum (Piperaceae). Ecology 73:143–152

    Article  Google Scholar 

  • Marquis RJ, Whelan CJ (1994) Insectivorous birds increase growth of white oak through consumption of leaf-chewing insects. Ecology 75:2007–2014

    Article  Google Scholar 

  • Maschinski J, Whitham TG (1989) The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. Am Nat 134:1–19

    Article  Google Scholar 

  • Matter SF, Brzyski JR, Harrison CJ et al (2012) Invading from the garden? A comparison of leaf herbivory for exotic and native plants in natural and ornamental settings. Insect Sci 19:677–682

    Article  Google Scholar 

  • Mazía N, Chaneton EJ, Dellacanonica C et al (2012) Seasonal patterns of herbivory, leaf traits and productivity consumption in dry and wet Patagonian forests. Ecol Entomol 37:193–203

    Article  Google Scholar 

  • Meehan TD, Couture JC, Bennett AE, Lindroth RL (2014) Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations. New Phytol 204:397–407

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe DB, Asner GP, Martin RE et al (2014) Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol Lett 17:324–332

    Article  PubMed  Google Scholar 

  • Moles AT, Westoby M (2000) Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90:517–524

    Article  Google Scholar 

  • Moles AT, Bonser SP, Poore AG et al (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388

    Article  Google Scholar 

  • Morales-Castilla I, Matias MG, Gravel D, Araújo MB (2015) Inferring biotic interactions from proxies. Trends Ecol Evol 30:347–356

    Article  PubMed  Google Scholar 

  • Moreira X, Abdala-Roberts L, Rasmann S et al (2016) Plant diversity effects on insect herbivores and their natural enemies: current thinking, recent findings, and future directions. Curr Opin Insect Sci 14:1–7

    Article  PubMed  Google Scholar 

  • Muiruri EW, Milligan HT, Morath S et al (2015) Moose browsing alters tree diversity effects on birch growth and insect herbivory. Funct Ecol 29:724–735

    Article  Google Scholar 

  • Murray TJ, Ellsworth DS, Tissue DT et al (2013) Interactive direct and plant-mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt-feeding insect herbivore. Glob Chang Biol 19:1407–1416

    Article  CAS  PubMed  Google Scholar 

  • Nabity PD, Zavala JA, DeLucia EH (2009) Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann Bot 103:655–663

    Article  CAS  PubMed  Google Scholar 

  • Nabity PD, Zavala JA, DeLucia EH (2013) Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in Nicotiana attenuata. J Exp Bot 64:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevalainen S, Niemelä P, Arkhipov P, Fedorets N (1994) Männiköiden terveydentila Karjalan aluella. Metsäntutkimuslaitoksen Tiedonantoja 489:25–30

    Google Scholar 

  • Neves FS, Silva JO, Espírito-Santo MM, Fernandes GW (2014) Insect herbivores and leaf damage along successional and vertical gradients in a tropical dry forest. Biotropica 46:14–24

    Article  Google Scholar 

  • Newbery DM, de Foresta H (1985) Herbivory and defense in pioneer, gap and understory trees of tropical rain forest in French Guiana. Biotropica 17:238–244

    Article  Google Scholar 

  • Niziolek OK, Berenbaum MR, DeLucia EH (2013) Impact of elevated CO2 and increased temperature on Japanese beetle herbivory. Insect Sci 20:513–523

    Article  PubMed  Google Scholar 

  • Norghauer JM, Glauser G, Newbery DM (2014) Seedling resistance, tolerance and escape from herbivores: insights from co-dominant canopy tree species in a resource poor African rain forest. Funct Ecol 28:1426–1439

    Article  Google Scholar 

  • Nowak RS, Caldwell MM (1984) A test of compensatory photosynthesis in the field: implications for herbivory tolerance. Oecologia 61:311–318

    Article  CAS  PubMed  Google Scholar 

  • Nuckols MS, Connor EF (1995) Do trees in urban or ornamental plantings receive more damage by insects than trees in natural forests? Ecol Entomol 20:253–260

    Article  Google Scholar 

  • Nykänen H, Koricheva J (2004) Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104:247–268

    Article  Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM et al (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Onoda Y, Westoby M, Adler PB et al (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312

    Article  PubMed  Google Scholar 

  • Pachzelt A, Forrest M, Rammig A et al (2015) Potential impact of large ungulate grazers on African vegetation, carbon storage and fire regimes. Glob Ecol Biogeogr 24:991–1002

    Article  Google Scholar 

  • Poorter L, van de Plassche M, Willems S, Boot RGA (2004) Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol 6:746–754

    Article  CAS  PubMed  Google Scholar 

  • Poveda K, Jimenez MIG, Kessler A (2010) The enemy as ally: herbivore-induced increase in crop yield. Ecol Appl 20:1787–1793

    Article  PubMed  Google Scholar 

  • Price PW (1975) Insect ecology. Wiley, New York, NY

    Google Scholar 

  • Raupp MJ, Shrewsbury PM, Herms DA (2010) Ecology of herbivorous arthropods in urban landscapes. Annu Rev Entomol 55:19–38

    Article  CAS  PubMed  Google Scholar 

  • Reichman OJ, Smith SC (1991) Responses to simulated leaf and root herbivory by a biennial, Tragopogon dubius. Ecology 72:116–124

    Article  Google Scholar 

  • Reingold AL (1998) Outbreak investigations – a perspective. Emerg Infect Dis 4:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retuerto R, Fernandez-Lema B, Rodriguez R, Obeso JR (2004) Increased photosynthetic performance in holly trees infested by scale insects. Funct Ecol 18:664–669

    Article  Google Scholar 

  • Revesz RL, Howard PH, Arrow K et al (2014) Global warming: improve economic models of climate change. Nature 508:173–175

    Article  PubMed  Google Scholar 

  • Rickman JK, Connor EF (2003) The effect of urbanization on the quality of remnant habitats for leaf-mining lepidoptera on Quercus agrifolia. Ecography 26:777–787

    Article  Google Scholar 

  • Roberts JA, Elliott KA, Gonzalez-Carranza ZH (2002) Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol 53:131–158

    Article  CAS  PubMed  Google Scholar 

  • Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336

    Article  CAS  PubMed  Google Scholar 

  • Root RB (1996) Herbivore pressure on goldenrods (Solidago altissima): its variation and cumulative effects. Ecology 77:1074–1087

    Article  Google Scholar 

  • Rosenthal R (1976) Experimenter effects in behavioral research. Wiley, New York, NY

    Google Scholar 

  • Rossetti MR, Gonzalez E, Salvo A et al (2014) Not all in the same boat: trends and mechanisms in herbivory responses to forest fragmentation differ among insect guilds. Arthropod Plant Interact 8:593–603

    Google Scholar 

  • Ruiz-Guerra B, Guevara R, Mariano NA et al (2010) Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119:317–325

    Article  Google Scholar 

  • Schaffer B, Mason LJ (1990) Effects of scale insect herbivory and shading on net gas exchange and growth of a subtropical tree species (Guaiacum sanctum L.). Oecologia 84:468–473

    Article  CAS  PubMed  Google Scholar 

  • Schaffer B, Pena JE, Colls AM et al (1997) Citrus leafminer (Lepidoptera: Gracillariidae) in lime: assessment of leaf damage and effects on photosynthesis. Crop Prot 16:337–343

    Article  Google Scholar 

  • Schowalter TD, Lowman MD (1999) Forest herbivory: insects. In: Walker LR (ed) Ecosystem of the World 16: ecosystems of disturbed ground. Elsevier, Amsterdam, pp 253–269

    Google Scholar 

  • Schuldt A, Baruffol M, Böhnke M et al (2010) Tree diversity promotes insect herbivory in subtropical forests of south-east China. J Ecol 98:917–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuldt A, Bruelheide H, Durka W et al (2012) Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests. Ecol Lett 15:732–739

    Article  PubMed  Google Scholar 

  • Schuldt A, Assmann T, Bruelheide H et al (2014) Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytol 202:864–873

    Article  PubMed  PubMed Central  Google Scholar 

  • Seidl R, Fernandes PM, Fonseca TF et al (2011) Modelling natural disturbances in forest ecosystems: a review. Ecol Model 222:903–924

    Article  Google Scholar 

  • Selikhovkin AV (2009) Can outbreaks of dendrophagous insects make a considerable impact on the biosphere? Biosphere 1(1):72–81 (in Russian, English summary)

    Google Scholar 

  • Simonetti JA, Grez AA, Celis-Diez JL et al (2007) Herbivory and seedling performance in a fragmented temperate forest of Chile. Acta Oecol 32:312–318

    Article  Google Scholar 

  • Smith WH (1974) Air pollution – effects on structure and function of temperate forest ecosystem. Environ Pollut 6:111–129

    Article  CAS  Google Scholar 

  • Stein C, Unsicker SB, Kahmen A et al (2010) Impact of invertebrate herbivory in grasslands depends on plant species diversity. Ecology 91:1639–1650

    Article  PubMed  Google Scholar 

  • Stephens AEA, Westoby M (2015) Effects of insect attack to stems on plant survival, growth, reproduction and photosynthesis. Oikos 124:266–273

    Article  Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Chang Biol 15:1823–1842

    Article  Google Scholar 

  • Stiling P, Moon D, Rossi A et al (2009) Seeing the forest for the trees: long-term exposure to elevated CO2 increases some herbivore densities. Glob Chang Biol 15:1895–1902

    Article  Google Scholar 

  • Sutherst RW, Maywald GF, Bourne AS (2007) Including species interactions in risk assessments for global change. Glob Chang Biol 13:1843–1859

    Article  Google Scholar 

  • Takahashi M, Huntly N (2010) Herbivorous insects reduce growth and reproduction of big sagebrush (Artemisia tridentata). Arthropod Plant Interact 4:257–266

    Article  Google Scholar 

  • Tedders WL, Smith JS (1976) Shading effect on pecan by sooty mold growth. J Econ Entomol 69:551–553

    Article  Google Scholar 

  • Tenow O, Bylund H (2000) Recovery of a Betula pubescens forest in northern Sweden after severe defoliation by Epirrita autumnata. J Veg Sci 11:855–862

    Article  Google Scholar 

  • Torp M, Olofsson J, Witzell J et al (2010) Snow-induced changes in dwarf birch chemistry increase moth larval growth rate and level of herbivory. Polar Biol 33:693–702

    Article  Google Scholar 

  • Trumble JT, Kolodnyhirsch DM, Ting IP (1993) Plant compensation for arthropod herbivory. Annu Rev Entomol 38:93–119

    Article  Google Scholar 

  • Turcotte MM, Davies TJ, Thomsen CJM, Johnson MTJ (2014) Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants. Proc R Soc Lond B Biol Sci 281:20140555

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Valladares G, Salvo A, Cagnolo L (2006) Habitat fragmentation effects on trophic processes of insect-plant food webs. Conserv Biol 20:212–217

    Article  PubMed  Google Scholar 

  • Vasconcelos HL (1999) Levels of leaf herbivory in Amazonian trees from different stages in forest regeneration. Acta Amaz 29:615–623

    Article  Google Scholar 

  • Vehviläinen H, Koricheva J, Ruohomäki K (2007) Tree species diversity influences herbivore abundance and damage: meta-analysis of long-term forest experiments. Oecologia 152:287–298

    Article  PubMed  Google Scholar 

  • Villagra M, Campanello PI, Montti L, Goldstein G (2013) Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance. Tree Physiol 33:285–296

    Article  CAS  PubMed  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA et al (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type, and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Welter SC (1989) Arthropod impact on plant gas exchange. In: Bernays EA (ed) Plant-insect interactions. CRC, Boca Raton, FL, pp 135–150

    Google Scholar 

  • Więski K, Pennings S (2014) Latitudinal variation in resistance and tolerance to herbivory of a salt marsh shrub. Ecography 37:763–769

    Article  Google Scholar 

  • Wilson EO (1987) The little things that run the world (the importance and conservation of invertebrates). Conserv Biol 1:344–346

    Article  Google Scholar 

  • Wint W (1983) The role of alternative host-plant species in the life of a polyphagous moth, Operophtera brumata (Lepidoptera, Geometridae). J Anim Ecol 52:439–450

    Article  Google Scholar 

  • Wise MJ, Abrahamson WG (2005) Beyond the compensatory continuum: environmental resource levels and plant tolerance of herbivory. Oikos 109:417–428

    Article  Google Scholar 

  • Wolf A, Kozlov MV, Callaghan T (2008) Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Clim Change 87:91–106

    Article  CAS  Google Scholar 

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Article  Google Scholar 

  • Zangerl AR, Arntz AM, Berenbaum MR (1997) Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia 109:433–441

    Article  CAS  PubMed  Google Scholar 

  • Zangerl AR, Hamilton JG, Miller TJ et al (2002) Impact of folivory on photosynthesis is greater than the sum of its holes. Proc Natl Acad Sci U S A 99:1088–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zava PC, Cianciaruso MV (2014) Can we use plant traits and soil characteristics to predict leaf damage in savanna woody species? Plant Ecol 215:625–637

    Article  Google Scholar 

  • Zhang S, Zhang Y, Ma K (2016) Latitudinal variation in herbivory: hemispheric asymmetries and the role of climatic drivers. J Ecol 104:1089–1095

    Article  Google Scholar 

  • Zhang S, Zhang Y, Ma K (2017) The association of leaf lifespan and background insect herbivory at the interspecific level. Ecology 98:425–432

    Article  PubMed  Google Scholar 

  • Zvereva EL, Kozlov MV (2001) Effects of pollution-induced habitat disturbance on the response of willows to simulated herbivory. J Ecol 89:21–30

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a meta-analysis. Glob Chang Biol 12:27–41

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV (2010) Responses of terrestrial arthropods to air pollution: a meta-analysis. Environ Sci Pollut Res 17:297–311

    Article  CAS  Google Scholar 

  • Zvereva EL, Kozlov MV (2012) Sources of variation in plant responses to belowground insect herbivory: a meta-analysis. Oecologia 169:441–452

    Article  PubMed  Google Scholar 

  • Zvereva EL, Kozlov MV (2014) Effects of herbivory on leaf life span in woody plants: a meta-analysis. J Ecol 102:873–881

    Article  Google Scholar 

  • Zvereva EL, Lanta V, Kozlov MV (2010a) Effects of sap-feeding insect herbivores on fitness of woody plants: a meta-analysis of experimental studies. Oecologia 163:949–960

    Article  PubMed  Google Scholar 

  • Zvereva EL, Roitto M, Kozlov MV (2010b) Growth and reproduction of vascular plants in polluted environments: a synthesis of existing knowledge. Environ Rev 18:355–367

    Article  CAS  Google Scholar 

  • Zvereva EL, Zverev VE, Kozlov MV (2012) Little strokes fell great oaks: minor but chronic herbivory substantially reduces birch growth. Oikos 121:2036–2043

    Article  Google Scholar 

  • Zvereva EL, Hunter MD, Zverev V, Kozlov MV (2016) Factors affecting population dynamics of leaf beetles in a subarctic region: the interplay between climate warming and pollution decline. Sci Total Environ 566–567:1277–1288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Academy of Finland (projects 122133, 268124, 276671 and 311929). We thank V. Zverev for providing a photograph and R. Matyssek and an anonymous reviewer for inspiring comments to an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Kozlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kozlov, M.V., Zvereva, E.L. (2017). Background Insect Herbivory: Impacts, Patterns and Methodology. In: Cánovas, F., Lüttge, U., Matyssek, R. (eds) Progress in Botany Vol. 79. Progress in Botany, vol 79. Springer, Cham. https://doi.org/10.1007/124_2017_4

Download citation

Publish with us

Policies and ethics