Skip to main content

Drought Stress and the Recovery from Xylem Embolism in Woody Plants

  • Chapter
  • First Online:
Progress in Botany Vol. 79

Part of the book series: Progress in Botany ((BOTANY,volume 79))

Abstract

Water is transported from roots to foliage through the xylem under negative pressure (=tension). Under this metastable status, water is prone to sudden phase change to water vapor (cavitation). In plants, air can also be aspirated into functioning xylem conduits through inter-conduit pit membranes, and the resulting embolism blocks water transport through the conduit and reduces plant hydraulic conductance and productivity. Xylem embolism and hydraulic failure are major factors contributing to tree mortality and forest decline under global-change-type droughts. However, some plants can tolerate even high embolism levels under drought, recovering hydraulic functionality upon partial or total rehydration via embolism repair and xylem refilling. Here, we review current evidence of embolism repair, highlighting possible physiological mechanisms and suggesting some functional and anatomical determinants making embolism reversal a feasible and successful drought resilience mechanism in some plants.

Communicated by Rainer Matyssek

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci U S A 106:7063–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams HD, Germino MJ, Breshears DD, Barron-Gafford BA, Guardiola-Claramonte M, Zou CB, Huxman TE (2013) Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol 197:1142–1151

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul 35:81–91

    Article  CAS  Google Scholar 

  • Alder NN, Pockman WT, Sperry JS, Nuismer S (1997) Use of centrifugal force in the study of xylem cavitation. J Exp Bot 48:665–674

    Article  CAS  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell NG, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH et al (2010) A global overview of drought and heath-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Article  Google Scholar 

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in Anthropocene. Ecosphere 6:129

    Article  Google Scholar 

  • Améglio T, Ewers FW, Cochard H, Martignac M, Vandame M, Bodet C, Cruiziat P (2001) Winter stem xylem pressure in walnut trees: effects of carbohydrates, cooling and freezing. Tree Physiol 21:387–394

    Article  PubMed  Google Scholar 

  • Améglio T, Bodet C, Lacointe A, Cochard H (2002) Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiol 22:1211–1220

    Article  PubMed  Google Scholar 

  • Améglio T, Decourteix M, Alves G, Valentin V, Sakr S, Julien JL, Petel G, Guilliot A, Lacointe A (2004) Temperature effects on xylem sap osmolarity in walnut trees: evidence for a vitalistic model of winter embolism repair. Tree Physiol 24:785–793

    Article  PubMed  Google Scholar 

  • Anderegg WRL, Kane JM, Anderegg LDL (2013a) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Chang 3:30–36

    Article  Google Scholar 

  • Anderegg WRL, Plavcová L, Anderegg LDL, Hacke UG, Berry JA, Field CB (2013b) Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Chang Biol 19:1188–1196

    Article  PubMed  Google Scholar 

  • Anderegg WRL, Flint A, Huang C, Flint L, Berry JA, Davis FW, Sperry JS, Field CB (2015) Tree mortality predicted from drought-induced vascular damage. Nat Geosci 8:367–371

    Article  CAS  Google Scholar 

  • Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016) Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci U S A 113:5024–5029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angeles G, Bond B, Boyer JS, Brodribb T, Brooks JR, Burns MJ, Cavender-Bares J, Clearwater M, Cochard H, Comstock J et al (2004) The cohesion-tension theory. New Phytol 163:451–452

    Article  Google Scholar 

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263–286

    Article  CAS  PubMed  Google Scholar 

  • Barigah TS, Charrier O, Douris M, Bonhomme M, Herbette S, Améglio T, Fichot R, Brignolas F, Cochard H (2013) Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann Bot 112:1431–1437

    Article  PubMed  PubMed Central  Google Scholar 

  • Beikircher B, Mayr S (2015) Avoidance of harvesting and sampling artefacts in hydraulic analyses: a protocol tested on Malus domestica. Tree Physiol 36:797–803

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouche PS, Delzon S, Choat B, Badel E, Brodribb TJ, Burlett R, Cochard H, Charra-Vaskou K, Lavigne B, Li S et al (2016) Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography. Plant Cell Environ 39:860–870

    Article  CAS  PubMed  Google Scholar 

  • Briggs LJ (1950) Limiting negative pressure of water. J Appl Phys 21:721–722

    Article  CAS  Google Scholar 

  • Brodersen CR, McElrone AJ (2013) Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front Plant Sci 4:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA (2010) The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol 154:1088–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ (2009) Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity. Plant Sci 177:245–251

    Article  CAS  Google Scholar 

  • Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R (2010) Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol 188:533–542

    Article  PubMed  Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg SL (2003) Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ 26:1633–1645

    Article  Google Scholar 

  • Cailleret M, Jansen S, Robert EMR, Desoto L, Aakala T, Antos JA, Beikircher B, Bigler C, Bugmann H, Caccianiga M et al (2017) A synthesis of radial growth patterns preceding tree mortality. Glob Chang Biol 23:1675–1690

    Article  PubMed  Google Scholar 

  • Canny MJ (1997) Vessel contents during transpiration – embolisms and refilling. Am J Bot 84:1223–1230

    Article  CAS  PubMed  Google Scholar 

  • Canny MJ (1998) Applications of the compensating pressure theory of water transport. Am J Bot 85:897–909

    Article  CAS  PubMed  Google Scholar 

  • Canny MJ, Huang CX, McCully ME (2001) The cohesion theory debate continues. Trends Plant Sci 6:454–455

    Article  CAS  PubMed  Google Scholar 

  • Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG, Xu X, Richardson AD (2013) Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytol 200:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez J, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci U S A 108:1474–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caupin F, Herbert E (2006) Cavitation in water: a review. C R Phys 7:1000–1017

    Article  CAS  Google Scholar 

  • Charra-Vaskou K, Badel E, Burlett R, Cochard H, Delzon S, Mayr S (2012) Hydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves. Tree Physiol 32:1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitarra W, Balestrini R, Vitali M, Pagliarani C, Perrone I, Schubert A, Lovisolo C (2014) Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles. Planta 239:887–899

    Article  CAS  PubMed  Google Scholar 

  • Choat B, Ball M, Luly J, Holtum J (2003) Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiol 131:41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Holbrook NM (2005) The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant Cell Environ 28:1082–1089

    Article  Google Scholar 

  • Choat B, Cobb A, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole plant hydraulic function. New Phytol 177:608–626

    Article  PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Choat B, Brodersen CR, McElrone AJ (2015) Synchrotron X-ray microtomography of xylem embolism in Sequoia sempervirens saplings during cycles of drought and recovery. New Phytol 205:1095–1105

    Article  PubMed  Google Scholar 

  • Choat B, Badel E, Burlett R, Delzon S, Cochard H, Jansen S (2016) Noninvasive measurement of vulnerability to drought-induced embolism by X-ray microtomography. Plant Physiol 170:273–282

    Article  CAS  PubMed  Google Scholar 

  • Christman MA, Sperry JS, Smith DD (2012) Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol 193:713–720

    Article  PubMed  Google Scholar 

  • Cochard H (2002) A technique for measuring xylem hydraulic conductance under high negative pressures. Plant Cell Environ 25:815–819

    Article  Google Scholar 

  • Cochard H, Delzon S (2013) Hydraulic failure and repair are not routine in trees. Ann For Sci 70:659–661

    Article  Google Scholar 

  • Cochard H, Cruiziat P, Tyree MT (1992) Use of positive pressures to establish vulnerability curves. Further support for the air-seedling hypothesis and implications for pressure-volume analysis. Plant Physiol 100:205–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochard H, Bodet C, Améglio T, Cruiziat P (2000) Cryo-scanning electron microscopy observations of vessel contents during transpiration in walnut petioles. Facts or artifacts? Plant Physiol 124:1191–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochard H, Herbette S, Hernández E, Hölttä T, Mencuccini M (2010) The effects of sap ionic composition on xylem vulnerability to cavitation. J Exp Bot 61:275–285

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013) Methods for measuring plant vulnerability to cavitation: a critical review. J Exp Bot 64:4779–4791

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Delzon S, Badel E (2015) X-ray microtomography (micro-CT): a reference technology for high-resolution quantification of xylem embolism in trees. Plant Cell Environ 38:201–206

    Article  CAS  PubMed  Google Scholar 

  • Comstock JP (1999) Why Canny’s theory doesn’t hold water. Am J Bot 86:1077–1081

    Article  CAS  PubMed  Google Scholar 

  • Crum LA (1979) Tensile strength of water. Nature 278:148–149

    Article  CAS  Google Scholar 

  • Davis SD, Ewers FW, Sperry JS, Portwood KA, Crocker MC, Adams GC (2002) Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. Am J Bot 89:820–828

    Article  PubMed  Google Scholar 

  • Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased drought risk in California. Proc Natl Acad Sci U S A 112:3931–3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon HH (1914) Transpiration and the ascent of sap in plants. Macmillan, London

    Book  Google Scholar 

  • Dixon HH, Joly J (1894) On the ascent of sap. Philos Trans R Soc Lond 186:563–576

    Article  Google Scholar 

  • Domec JC, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Villalobos-Vega R (2006) Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status. Plant Cell Environ 29:26–35

    Article  CAS  PubMed  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Ennajeh M, Simões F, Khemira H, Cochard H (2011) How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms? Physiol Plant 142:205–210

    Article  CAS  PubMed  Google Scholar 

  • Enns LC, Canny MJ, McCully ME (2000) An investigation of the role of solutes in the xylem sap and in the xylem parenchyma as the source of root pressure. Protoplasma 211:183–197

    Article  CAS  Google Scholar 

  • Ewers FW, Cochard H, Tyree MT (1997) A survey of root pressures in vines of a tropical lowland forest. Oecologia 110:191–196

    Article  PubMed  Google Scholar 

  • Fisher JB, Angeles G, Ewers FW, Lopez Portillo J (1997) Survey of root pressures in tropical vines and woody species. Int J Plant Sci 158:44–50

    Article  Google Scholar 

  • Galvez DA, Landhäusser SM, Tyree MT (2013) Low root reserve accumulation during drought may lead to winter mortality in poplar seedlings. New Phytol 198:139–148

    Article  PubMed  Google Scholar 

  • Ganthaler A, Mayr S (2015) Dwarf shrub hydraulics: two Vaccinium species (Vaccinium myrtillus, Vaccinium vitis-idaea) of the European Alps compared. Physiol Plant 155:424–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gascò A, Nardini A, Gortan E, Salleo S (2006) Ion-mediated increase in the hydraulic conductivity of Laurel stems: role of pits and consequences for the impact of cavitation on water transport. Plant Cell Environ 29:1946–1955

    Article  PubMed  CAS  Google Scholar 

  • Gascò A, Salleo S, Gortan E, Nardini A (2007) Seasonal changes in the ion-mediated increase of xylem hydraulic conductivity in stems of three evergreens: any functional role? Physiol Plant 129:597–606

    Article  CAS  Google Scholar 

  • Gaylord ML, Kolb TE, Pockman WT, Plaut JA, Yepez EA, Macalady AK, Pangle RE, McDowell NG (2013) Drought predisposes piñon-juniper woodlands to insect attacks and mortality. New Phytol 198:567–578

    Article  CAS  PubMed  Google Scholar 

  • Giuggiola A, Bugmann H, Zingg A, Dobbertin M, Rigling A (2013) Reduction of stand density increases drought resistance in xeric Scots pine forests. For Ecol Manage 310:827–835

    Article  Google Scholar 

  • Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF et al (2016) Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol 209:123–136

    Article  CAS  PubMed  Google Scholar 

  • Gortan E, Nardini A, Salleo S, Jansen S (2011) Pit membrane chemistry influences the magnitude of ion-mediated enhancement of xylem hydraulic conductivity in four Lauraceae. Tree Physiol 31:48–58

    Article  CAS  PubMed  Google Scholar 

  • Gruber A, Pirkebner D, Florian C, Oberhuber W (2012) No evidence for depletion of carbohydrate pools in Scots pine (Pinus sylvestris L.) under drought stress. Plant Biol 14:142–148

    CAS  PubMed  Google Scholar 

  • Hacke UG, Sauter JJ (1996) Xylem dysfunction during winter and recovery of hydraulic conductivity in diffuse-porous and ring-porous trees. Oecologia 105:435–439

    Article  CAS  PubMed  Google Scholar 

  • Hacke UG, Sperry JS (2003) Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo. Plant Cell Environ 26:303–311

    Article  Google Scholar 

  • Hacke UG, Stiller V, Sperry JS, Pittermann J, McCulloh KA (2001) Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol 125:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacke UG, Venturas MD, MacKinnon MD, Jacobsen AL, Sperry JS, Pratt RB (2015) The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems. New Phytol 205:116–127

    Article  PubMed  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207

    Article  Google Scholar 

  • Hartmann H, Trumbore S (2016) Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytol 211:386–403

    Article  CAS  PubMed  Google Scholar 

  • Hartmann H, Ziegler W, Kolle O, Trumbore S (2013) Thirst beats hunger – declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol 200:340–349

    Article  CAS  PubMed  Google Scholar 

  • He B, Cui X, Wang H, Chen A (2014) Drought: the most important physical stress of terrestrial ecosystems. Acta Ecol Sin 34:179–183

    Article  Google Scholar 

  • Herbette S, Bouchet B, Brunel N, Bonnin E, Cochard H, Guillon F (2015) Immunolabelling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in Populus tremula x alba. Ann Bot 115:187–199

    Article  PubMed  Google Scholar 

  • Hillabrand RM, Hacke UG, Lieffers VJ (2016) Drought-induced xylem pit membrane damage in aspen and balsam poplar. Plant Cell Environ 39:2210–2220

    Article  CAS  PubMed  Google Scholar 

  • Hoch G (2015) Carbon reserves as indicators for carbon limitation in trees. Prog Bot 76:321–346

    Google Scholar 

  • Holbrook NM, Zwieniecki MA (1999) Xylem refilling under tension. Do we need a miracle? Plant Physiol 120:7–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001) In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiol 126:27–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hölttä T, Vesala T, Nikinmaa E, Perämäki M, Siivola E, Mencuccini M (2005) Field measurements of ultrasonic acoustic emissions and stem diameter variations. New insight into the relationship between xylem tensions and embolism. Tree Physiol 25:237–243

    Article  PubMed  Google Scholar 

  • Hölttä T, Vesala T, Perämäki M, Nikinmaa E (2006) Refilling of embolised conduits as a consequence of ‘Münch water’ circulation. Funct Plant Biol 33:949–959

    Article  Google Scholar 

  • Hukin D, Cochard H, Dreyer E, Le Thiec D, Bogeat-Triboulot MB (2005) Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species? J Exp Bot 56:2003–2010

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW (2012) A global analysis of xylem vessel length in woody plants. Am J Bot 99:1583–1591

    Article  PubMed  Google Scholar 

  • Jactel H, Petit J, Desprez-Loustau ML, Delzon S, Piou D, Battisti A, Koricheva J (2012) Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Chang Biol 18:267–276

    Article  Google Scholar 

  • Jansen S, Gortan E, Lens F, Lo Gullo MA, Salleo S, Scholz A, Stein A, Trifilò P, Nardini A (2011) Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem? New Phytol 189:218–228

    Article  PubMed  Google Scholar 

  • Jansen S, Schuldt B, Choat B (2015) Current controversies and challenges in applying plant hydraulic techniques. New Phytol 205:961–964

    Article  PubMed  Google Scholar 

  • Jaquish LL, Ewers FW (2001) Seasonal conductivity and embolism in the roots and stems of two clonal ring-porous trees, Sassafras albidum (Lauraceae) and Rhus typhina (Anacardiaceae). Am J Bot 88:206–212

    Article  CAS  PubMed  Google Scholar 

  • Johnson DM, Meinzer FC, Woodruff DR, McCulloh KA (2009) Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant Cell Environ 32:828–836

    Article  PubMed  Google Scholar 

  • Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC (2012) Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci 195:48–53

    Article  CAS  PubMed  Google Scholar 

  • Kikuta SB, Lo Gullo MA, Nardini A, Richter H, Salleo S (1997) Ultrasound acoustic emissions from dehydrating leaves of deciduous and evergreen trees. Plant Cell Environ 20:1381–1390

    Article  Google Scholar 

  • Klein T (2014) The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol 28:1313–1320

    Article  Google Scholar 

  • Klein T, Cohen S, Paudel I, Preisler Y, Rotenberg E, Yakir D (2016) Diurnal dynamics of water transport, storage and hydraulic conductivity in pine trees under seasonal drought. iForest 9:710–719

    Article  Google Scholar 

  • Knipfer T, Brodersen CR, Zedan A, Kluepfel DA, McElrone AJ (2015a) Patterns of drought-induced embolism formation and spread in living walnut saplings visualized using X-ray microtomography. Tree Physiol 35:744–755

    Article  CAS  PubMed  Google Scholar 

  • Knipfer T, Eustis A, Brodersen CR, Walker AM, McElrone AJ (2015b) Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure. Plant Cell Environ 38:1503–1513

    Article  PubMed  Google Scholar 

  • Knipfer T, Cuneo IF, Brodersen CR, McElrone AJ (2016) In situ visualization of the dynamics in xylem embolism formation and removal in the absence of root pressure: a study on excised grapevine stems. Plant Physiol 171:1024–1036

    PubMed  PubMed Central  Google Scholar 

  • Kramer PJ (1983) Water relations of plants. Academic Press, London

    Google Scholar 

  • Laur J, Hacke UG (2014) Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytol 203:388–400

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Kim Y (2008) In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging. Ann Bot 101:595–602

    Article  PubMed  Google Scholar 

  • Lee SJ, Hwang BG, Kim HK (2013) Hydraulic characteristics of water-refilling process in excised roots of Arabidopsis. Planta 238:307–315

    Article  CAS  PubMed  Google Scholar 

  • Leng H, Lu M, Wan X (2013) Variation in embolism occurrence and repair along the stem in drought-stressed and re-watered seedlings of a poplar clone. Physiol Plant 147:329–339

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sperry JS, Taneda H, Bush SE, Hacke UG (2008) Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytol 177:558–568

    PubMed  Google Scholar 

  • López R, Cano FJ, Choat B, Cochard H, Gil L (2016) Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient. Front Plant Sci 7:769

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Peng C, Zhu Q, Chen H, Yu G, Li W, Zhou X, Wang W, Zhang W (2012) Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc Natl Acad Sci U S A 109:2423–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire AJ, Kobe RK (2015) Drought and shade deplete nonstructural carbohydrate reserves in seedlings of five temperate tree species. Ecol Evol 5:5711–5721

    Article  PubMed  PubMed Central  Google Scholar 

  • Martorell S, Diaz-Espejo A, Medrano H, Ball MC, Choat B (2014) Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange. Plant Cell Environ 37:617–626

    Article  CAS  PubMed  Google Scholar 

  • Mayr S, Améglio T (2016) Freezing stress in tree xylem. Prog Bot 77:381–414

    Google Scholar 

  • Mayr S, Sperry JS (2010) Freeze-thaw-induced embolism in Pinus contorta: centrifuge experiments validate the “thaw-expansion hypothesis” but conflict with ultrasonic emission data. New Phytol 185:1016–1024

    Article  PubMed  Google Scholar 

  • Mayr S, Kartusch B, Kikuta S (2014a) Evidence for air-seeding: watching the formation of embolism in conifer xylem. J Plant Hydraul 1:e0004

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayr S, Schmid P, Laur J, Rosner S, Charra-Vaskou K, Dämon B, Hacke UG (2014b) Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiol 164:1731–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCully ME, Huang CX, Ling LE (1998) Daily embolism and refilling of xylem vessels in the roots of field-grown maize. New Phytol 138:327–342

    Article  Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell NG, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • McElrone AJ, Brodersen CR, Alsina MM, Drayton WM, Matthews MA, Shackel KA, Wada H, Zufferey V, Choat B (2012) Centrifuge technique consistently overestimates vulnerability to water stress-induced cavitation in grapevines as confirmed with high-resolution computed tomography. New Phytol 196:661–665

    Article  CAS  PubMed  Google Scholar 

  • Meinzer FC, Campanello PI, Domec JC, Gatti MG, Goldstein G, Villalobos-Vega R, Woodruff DR (2008) Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiol 28:1609–1617

    Article  PubMed  Google Scholar 

  • Meisner A, De Deyna GB, de Boer W, van der Putten WH (2013) Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc Natl Acad Sci U S A 110:9835–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melcher PJ, Zwieniecki MA (2013) Functional analysis of embolism induced by air injection in Acer rubrum and Salix nigra. Front Plant Sci 4:368

    Article  PubMed  PubMed Central  Google Scholar 

  • Melcher PJ, Goldstein G, Meinzer FC, Yount DE, Jones TJ, Holbrook NM, Huang CX (2001) Water relations of coastal and estuarine Rhizophora mangle: xylem pressure potential and dynamics of embolism formation and repair. Oecologia 126:182–192

    Article  CAS  PubMed  Google Scholar 

  • Melcher PJ, Holbrook NM, Burns MJ, Zwieniecki MA, Cobb AR, Brodribb TJ, Choat B, Sack L (2012) Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods Ecol Evol 3:685–694

    Article  Google Scholar 

  • Mencuccini M, Hölttä T, Sevanto S, Nikinmaa E (2013) Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. New Phytol 198:1143–1154

    Article  PubMed  Google Scholar 

  • Milburn JA (1973) Cavitation studies on whole Ricinus plants by acoustic detection. Planta 112:333–342

    Article  CAS  PubMed  Google Scholar 

  • Minot CS (1885) The formative force of organisms. Science 6:4–6

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Gutiérrez C, Dawson TE, Nicolás E, Querejeta JI (2012) Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytol 196:489–496

    Article  PubMed  CAS  Google Scholar 

  • Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MAF, Martínez-Cabrera HI, McGlinn DJ, Wheeler E, Zheng J, Ziemińska K, Jansen S (2016) A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol 209:1553–1565

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Luglio J (2014) Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes. Funct Ecol 28:810–818

    Article  Google Scholar 

  • Nardini A, Salleo S (2000) Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees 15:14–24

    Article  Google Scholar 

  • Nardini A, Tyree MT, Salleo S (2001) Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiol 125:1700–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardini A, Salleo S, Trifilò P, Lo Gullo MA (2003) Water relations and hydraulic characteristics of three woody species co-occurring in the same habitat. Ann For Sci 60:297–305

    Article  Google Scholar 

  • Nardini A, Gascò A, Trifilò P, Lo Gullo MA, Salleo S (2007a) Ion-mediated enhancement of xylem hydraulic conductivity is not always suppressed by the presence of Ca2+ in the sap. J Exp Bot 58:2609–2615

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Gascò A, Cervone F, Salleo S (2007b) Reduced content of homogalacturonan does not alter the ion-mediated increase in xylem hydraulic conductivity in tobacco. Plant Physiol 143:1975–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardini A, Ramani M, Gortan E, Salleo S (2008) Vein recovery occurs under negative pressure in leaves of sunflower (Helianthus annuus). Physiol Plant 133:755–764

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Grego F, Trifilò P, Salleo S (2010) Changes of xylem sap ionic content and stem hydraulics in response to irradiance in Laurus nobilis. Tree Physiol 30:628–635

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Lo Gullo MA, Salleo S (2011a) Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Sci 180:604–611

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Salleo S, Jansen S (2011b) More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. J Exp Bot 62:4701–4718

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Dimasi F, Klepsch M, Jansen S (2012) Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. Tree Physiol 32:1434–1441

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Battistuzzo M, Savi T (2013) Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol 200:322–329

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Lo Gullo MA, Trifilò P, Salleo S (2014) The challenge of the Mediterranean climate to plant hydraulics: responses and adaptations. Environ Exp Bot 103:68–79

    Article  Google Scholar 

  • Nardini A, Casolo V, Dal Borgo A, Savi T, Stenni B, Bertoncin P, Zini L, McDowell NG (2016) Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant Cell Environ 39:618–627

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Savi T, Losso A, Petit G, Pacilè S, Tromba G, Mayr S, Trifilò P, Lo Gullo MA, Salleo S (2017) X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance. New Phytol 213:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Nolf M, Beikircher B, Rosner S, Nolf A, Mayr S (2015) Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions. New Phytol 208:625–632

    Article  PubMed  PubMed Central  Google Scholar 

  • Nolf M, Lopez R, Peters JMR, Flavel RJ, Koloadin LS, Young IM, Choat B (2017) Visualization of xylem embolism by X-ray microtomography: a direct test against hydraulic measurements. New Phtyol 214:890–898

    Article  CAS  Google Scholar 

  • Oddo E, Inzerillo S, La Bella F, Grisafi F, Salleo S, Nardini A (2011) Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol 31:131–138

    Article  PubMed  Google Scholar 

  • Oddo E, Inzerillo S, Grisafi F, Sajeva M, Salleo S, Nardini A (2014) Does short-term potassium fertilization improve recovery from drought stress in laurel? Tree Physiol 34:906–913

    Article  PubMed  Google Scholar 

  • Oertli JJ (1971) The stability of water under tension in the xylem. Z Pflanzenphysiol 65:195–209

    Google Scholar 

  • Ogasa MY, Miki NH, Murakami Y, Yoshikawa K (2013) Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree Physiol 33:335–344

    Article  PubMed  Google Scholar 

  • Ogasa MY, Utsumi Y, Miki NH, Yazaki K, Fukuda K (2016) Cutting stems before relaxing xylem tension induces artefacts in Vitis coignetiae, as evidenced by magnetic resonance imaging. Plant Cell Environ 39:329–337

    Article  CAS  PubMed  Google Scholar 

  • Pate JS, Canny MJ (1999) Quantification of vessel embolisms by direct observation: a comparison of two methods. New Phytol 141:33–43

    Article  Google Scholar 

  • Pereira L, Bittencourt PRL, Oliveira RS, Junior MBM, Barros FV, Ribeiro RV, Mazzafera P (2016) Plant pneumatics: stem air flow is related to embolism – new perspectives on methods in plant hydraulics. New Phytol 211:357–370

    Article  PubMed  Google Scholar 

  • Perrone I, Pagliarani C, Lovisolo C, Chitarra W, Roman F, Schubert A (2012) Recovery from water stress affects grape leaf petiole transcriptome. Planta 235:1383–1396

    Article  CAS  PubMed  Google Scholar 

  • Pickard WF (1981) The ascent of sap in plants. Prog Biophys Mol Biol 37:181–229

    Article  Google Scholar 

  • Piškur B, Pavlic D, Slippers B, Ogris N, Maresi G, Wingfield MJ, Jurc D (2011) Diversity and pathogenicity of Botryosphaeriaceae on declining Ostrya carpinifolia in Slovenia and Italy following extreme weather conditions. Eur J For Res 130:235–149

    Article  Google Scholar 

  • Plavcová L, Hoch G, Morris H, Ghiasi S, Jansen S (2016) The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. Am J Bot 103:603–612

    Article  PubMed  CAS  Google Scholar 

  • Pollastrini M, Feducci M, Bonal D, Fotelli M, Gessler A, Grossiord C, Guyot V, Jactel H, Nguyen D, Radoglou K, Bussotti F (2016) Physiological significance of forest tree defoliation: results from a survey in a mixed forest in Tuscany (central Italy). For Ecol Manage 361:170–178

    Article  Google Scholar 

  • Pratt RB, MacKinnon ED, Venturas MD, Crous CJ, Jacobsen AL (2015) Root resistance to cavitation is accurately measured using a centrifuge technique. Tree Physiol 35:185–196

    Article  CAS  PubMed  Google Scholar 

  • Priestley JH (1920) The mechanism of root pressure. New Phytol 19:189–200

    Article  CAS  Google Scholar 

  • Quentin AG, Pinkard EA, Ryan MG, Tissue DT, Baggett LS, Adams HD, Maillard P, Marchand J, Landhäusser SM, Lacointe A et al (2015) Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol 35:1146–1165

    CAS  PubMed  Google Scholar 

  • Quero JL, Sterck FJ, Martínez-Vilalta J, Villar R (2011) Water-use strategies of six co-existing Mediterranean woody species during a summer drought. Oecologia 166:45–57

    Article  PubMed  Google Scholar 

  • Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295

    Article  CAS  PubMed  Google Scholar 

  • Rockwell FE, Wheeler JK, Holbrook NM (2014) Cavitation and its discontents: opportunities for resolving current controversies. Plant Physiol 164:1649–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland V, Bergstrom DM, Lenné T, Bryant G, Chen H, Wolfe J, Holbrook NM, Stanton DE, Ball MC (2015) Easy come, easy go: capillary forces enable rapid refilling of embolized primary xylem vessels. Plant Physiol 168:1636–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland L, da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS et al (2015) Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528:119–122

    CAS  PubMed  Google Scholar 

  • Ryu J, Hwang BG, Lee SJ (2016) In vivo dynamic analysis of water refilling in embolized xylem vessels of intact Zea mays leaves. Ann Bot 118:1033–1042

    Article  PubMed Central  Google Scholar 

  • Sakr S, Alves G, Morillon R, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ (2003) Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol 133:630–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salleo S, Lo Gullo MA (1989) Xylem cavitation in nodes and internodes of Vitis vinifera L. plants subjected to water stress. Limits of restoration of water conduction in cavitated xylem conduits. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses: water shortage. SPB Academic Publishing, The Hague, pp 33–42

    Google Scholar 

  • Salleo S, Hinckley TM, Kikuta SB, Lo Gullo MA, Weilgony P, Yoon TM, Richter H (1992) A method for inducing xylem embolism in situ: experiments with a field-grown tree. Plant Cell Environ 15:491–497

    Article  Google Scholar 

  • Salleo S, Lo Gullo MA, De Paoli D, Zippo M (1996) Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytol 132:47–56

    Article  Google Scholar 

  • Salleo S, Nardini A, Pitt F, Lo Gullo MA (2000) Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.) Plant Cell Environ 23:71–79

    Article  Google Scholar 

  • Salleo S, Lo Gullo MA, Trifilò P, Nardini A (2004) New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant Cell Environ 27:1065–1076

    Article  Google Scholar 

  • Salleo S, Trifilò P, Lo Gullo MA (2006) Phloem as a possible major determinant of rapid cavitation reversal in stems of Laurus nobilis (laurel). Funct Plant Biol 33:1063–1074

    Article  Google Scholar 

  • Salleo S, Trifilò P, Esposito S, Nardini A, Lo Gullo MA (2009) Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair? Funct Plant Biol 36:815–825

    Article  Google Scholar 

  • Sánchez-Salguero R, Navarro-Cerrillo RM, Swetnam TW, Zavala MA (2012) Is drought the main decline factor at the rear edge of Europe? The case of southern Iberian pine plantations. For Ecol Manage 271:158–169

    Article  Google Scholar 

  • Savi T, Bertuzzi S, Branca S, Tretiach M, Nardini A (2015) Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change? New Phytol 205:1106–1116

    Article  PubMed  Google Scholar 

  • Savi T, Marin M, Luglio J, Petruzzellis F, Mayr S, Nardini A (2016a) Leaf hydraulic vulnerability protects stem functionality under drought stress in Salvia officinalis. Funct Plant Biol 43:370–379

    Article  CAS  Google Scholar 

  • Savi T, Casolo V, Luglio J, Bertuzzi S, Trifilò P, Lo Gullo MA, Nardini A (2016b) Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars. Plant Physiol Biochem 106:198–207

    Article  CAS  PubMed  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F (2007) Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. Plant Cell Environ 30:236–248

    Article  PubMed  Google Scholar 

  • Schreiber SG, Hacke UG, Chamberland S, Lowe CW, Kamelchuk D, Bräutigam K, Campbell MM, Thomas BR (2016) Leaf size serves as a proxy for xylem vulnerability to cavitation in plantation trees. Plant Cell Environ 39:272–281

    Article  CAS  PubMed  Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Scoffoni C, Sack L (2015) Are leaves ‘freewheelin’? Testing for a wheeler-type effect in leaf xylem hydraulic decline. Plant Cell Environ 38:534–543

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2010) Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process. Plant Cell Environ 33:1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2012) Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling. Plant Physiol 160:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secchi F, Zwieniecki MA (2016) Accumulation of sugars in the xylem apoplast observed under water stress conditions is controlled by xylem pH. Plant Cell Environ 39:2350–2360

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Gilbert ME, Zwieniecki MA (2011) Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling. Plant Physiol 157:1419–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secchi F, Pagliarani C, Zwieniecki MA (2016) The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant Cell Environ. doi:10.1111/pce.12831

    Google Scholar 

  • Sevanto S (2014) Phloem transport and drought. J Exp Bot 65:1751–1759

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2016) Root pressure: getting to the root of pressure. Prog Bot 77:105–150

    Google Scholar 

  • Sippel S, Otto FEL (2014) Beyond climatological extremes – assessing how the odds of hydrometeorological extreme events in the South-East Europe change in a warming climate. Clim Change 125:381–398

    Article  Google Scholar 

  • Sperry JS (1986) Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiol 80:110–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS (2013) Cutting-edge research or cutting-edge artefact? An overdue control experiment complicates the xylem refilling story. Plant Cell Environ 36:1916–1918

    PubMed  Google Scholar 

  • Sperry JS, Holbrook NM, Zimmermann MH, Tyree MT (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiol 83:414–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988) Seasonal occurrence of xylem embolism in sugar maple (Acer saccharum). Am J Bot 75:1212–1218

    Article  Google Scholar 

  • Sperry JS, Christman MA, Torres-Ruiz JM, Taneda H, Smith DD (2012) Vulnerability curves by centrifugation: is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid? Plant Cell Environ 35:601–610

    Article  PubMed  Google Scholar 

  • Spicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186:577–592

    Article  CAS  PubMed  Google Scholar 

  • Steinkamp J, Hickler T (2015) Is drought-induced forest dieback globally increasing? J Ecol 103:31–43

    Article  Google Scholar 

  • Stiller V, Sperry JS (1999) Canny’s compensating pressure theory fails a test. Am J Bot 86:1082–1086

    Article  CAS  PubMed  Google Scholar 

  • Stiller V, Sperry JS (2002) Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.) J Exp Bot 53:1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Stiller V, Sperry JS, Lafitte R (2005) Embolized conduits of rice (Oryza sativa, Poaceae) refill despite negative xylem pressure. Am J Bot 92:1970–1974

    Article  PubMed  Google Scholar 

  • Suuronen JP, Peura M, Fagerstedt K, Serimaa R (2013) Visualizing water-filled versus embolized status of xylem conduits by desktop x-ray microtomography. Plant Methods 9:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Taneda H, Sperry JS (2008) A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiol 28:1641–1651

    Article  PubMed  Google Scholar 

  • Tombesi S, Nardini A, Farinelli D, Palliotti A (2014) Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Physiol Plant 152:453–464

    Article  CAS  PubMed  Google Scholar 

  • Torres-Ruiz JM, Cochard H, Mayr S, Beikircher B, Diaz-Espejo A, Rodriguez-Dominguez CM, Badel E, Fernández JE (2014) Vulnerability to cavitation in Olea europaea current-year shoots: further evidence of an open-vessel artifact associated with centrifuge and air-injection techniques. Physiol Plant 152:465–474

    Article  CAS  PubMed  Google Scholar 

  • Torres-Ruiz JM, Jansen S, Choat B, McElrone AJ, Cochard H, Brodribb TJ, Badel E, Burlett R, Bouche PS, Brodersen CR (2015) Direct X-ray microtomography observation confirms the induction of embolism upon xylem cutting under tension. Plant Physiol 167:40–43

    Article  CAS  PubMed  Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4:17–22

    Article  Google Scholar 

  • Trifilò P, Nardini A, Lo Gullo MA, Salleo S (2003) Vein cavitation and stomatal behaviour of sunflower (Helianthus annuus) leaves under water limitation. Physiol Plant 119:409–417

    Article  Google Scholar 

  • Trifilò P, Lo Gullo MA, Salleo S, Callea K, Nardini A (2008) Xylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements. Tree Physiol 28:1505–1512

    Article  PubMed  Google Scholar 

  • Trifilò P, Nardini A, Raimondo F, Lo Gullo MA, Salleo S (2011) Ion-mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis. Funct Plant Biol 38:606–613

    Article  Google Scholar 

  • Trifilò P, Raimondo F, Lo Gullo MA, Barbera PM, Salleo S, Nardini A (2014a) Relax and refill: xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low PLC values. Plant Cell Environ 37:2491–2499

    Article  PubMed  CAS  Google Scholar 

  • Trifilò P, Barbera PM, Raimondo F, Nardini A, Lo Gullo MA (2014b) Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens. Tree Physiol 34:109–122

    Article  PubMed  Google Scholar 

  • Trifilò P, Nardini A, Lo Gullo MA, Barbera PM, Savi T, Raimondo F (2015) Diurnal changes in embolism rate in nine dry forest trees: relationships with species-specific xylem vulnerability, hydraulic strategy and wood traits. Tree Physiol 35:694–705

    Article  PubMed  CAS  Google Scholar 

  • Trifilò P, Raimondo F, Savi T, Lo Gullo MA, Nardini A (2016) The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance. J Exp Bot 67:5029–5039

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT (2003) The ascent of water. Nature 423:923

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Dixon MA (1983) Cavitation events in Thuja occidentalis L. Ultrasonic acoustic emissions from the sapwood can be measured. Plant Physiol 72:1094–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, Berlin

    Book  Google Scholar 

  • Tyree MT, Snyderman DA, Wilmot TR, Machado JL (1991) Water relations and hydraulic architecture of a tropical tree (Schefflera morototoni): data, models, and a comparison with two temperate species (Acer saccharum and Thuja occidentalis). Plant Physiol 96:1105–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyree MT, Alexander J, Machado JL (1992) Loss of hydraulic conductivity due to water stress in intact juveniles of Quercus rubra and Populus deltoides. Tree Physiol 10:411–415

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Cochard H, Cruiziat P, Sinclair B, Ameglio T (1993) Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant Cell Environ 7:879–882

    Article  Google Scholar 

  • Tyree MT, Salleo S, Nardini A, Lo Gullo MA, Mosca R (1999) Refilling of embolized vessels in young stems of Laurel. Do we need a new paradigm? Plant Physiol 120:11–21

    Article  CAS  PubMed Central  Google Scholar 

  • Umebayashi T, Ogasa MY, Miki NH, Utsumi Y, Haishi T, Fukuda K (2016) Freezing xylem conduits with liquid nitrogen creates artefactual embolisms in water-stressed broadleaf trees. Trees 30:305–316

    Article  CAS  Google Scholar 

  • Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S (2013) Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33:672–683

    Article  CAS  PubMed  Google Scholar 

  • Utsumi Y, Sano Y, Fujikawa S, Funada R, Ohtani J (1998) Visualization of cavitated vessels in winter and refilled vessels in spring in diffuse-porous trees by cryo-scanning electron microscopy. Plant Physiol 117:1463–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venturas MD, Mackinonn ED, Jacobsen AL, Pratt RB (2015) Excising stem samples underwater at native tension does not induce xylem cavitation. Plant Cell Environ 38:1060–1068

    Article  CAS  PubMed  Google Scholar 

  • Vesala T, Hölttä T, Perämäki M, Nikinmaa E (2003) Refilling of a hydraulically isolated embolized xylem vessel: model calculations. Ann Bot 91:419–428

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Zhang L, Zhang S, Cai J, Tyree MT (2014) Water relations of Robinia pseudoacacia L.: do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia? Plant Cell Environ 37:2667–2678

    Article  PubMed  Google Scholar 

  • Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83:441–470

    Article  Google Scholar 

  • Wegner LH (2014) Root pressure and beyond: energetically uphill water transport into xylem vessels? J Exp Bot 65:381–393

    Article  CAS  PubMed  Google Scholar 

  • Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013) Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ 36:1938–1949

    CAS  PubMed  Google Scholar 

  • Yang S, Tyree MT (1992) A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant Cell Environ 15:633–643

    Article  Google Scholar 

  • Yang SJ, Zhang YJ, Sun M, Goldstein G, Cao KF (2012) Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure. Tree Physiol 32:414–422

    Article  CAS  PubMed  Google Scholar 

  • Zeuthen T (2010) Water-transporting proteins. J Membr Biol 234:57–73

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Hartmann H, Trumbore S, Ziegler W, Zhang Y (2013) High temperature causes negative whole-plant carbon balance under mild drought. New Phytol 200:330–339

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MH (1978) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56:2286–2295

    Article  Google Scholar 

  • Zufferey V, Cochard H, Améglio T, Spring JL, Viret O (2011) Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas). J Exp Bot 62:3885–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwieniecki MA, Holbrook NM (1998) Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.), red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.) Plant Cell Environ 21:1173–1180

    Article  Google Scholar 

  • Zwieniecki MA, Holbrook NM (2000) Bordered pit structure and vessel wall surface properties. Implications for embolism repair. Plant Physiol 123:1015–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwieniecki MA, Holbrook NM (2009) Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci 14:530–534

    Article  CAS  PubMed  Google Scholar 

  • Zwieniecki MA, Secchi F (2015) Threats to xylem hydraulic function of trees under ‘new climate normal’ conditions. Plant Cell Environ 38:1713–1724

    Article  PubMed  Google Scholar 

  • Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059–1062

    Article  CAS  PubMed  Google Scholar 

  • Zwieniecki MA, Melcher PJ, Ahrens ET (2013) Analysis of spatial and temporal dynamics of xylem refilling in Acer rubrum L. using magnetic resonance imaging. Front Plant Sci 4:265

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Nardini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nardini, A., Savi, T., Trifilò, P., Lo Gullo, M.A. (2017). Drought Stress and the Recovery from Xylem Embolism in Woody Plants. In: Cánovas, F., Lüttge, U., Matyssek, R. (eds) Progress in Botany Vol. 79. Progress in Botany, vol 79. Springer, Cham. https://doi.org/10.1007/124_2017_11

Download citation

Publish with us

Policies and ethics