Advertisement

Solar UV Irradiation-Induced Production of Greenhouse Gases from Plant Surfaces: From Leaf to Earth

  • Teis Nørgaard MikkelsenEmail author
  • Dan Bruhn
  • Per Ambus
Chapter
Part of the Progress in Botany book series (BOTANY, volume 78)

Abstract

During the past few decades it has been documented that the ultra-violet (UV) component of natural sunlight alone or in combination with visible light can instantaneously stimulate aerobic plant production of a range of important trace gases: CH4, CO2, CO, short-chain hydrocarbons/ non-methane volatile organic compounds (NMVOC), NOx and N2O. This gas production, near or at the plant surface, is a new discovery and is normally not included in emission budgets (e.g. by the Intergovernmental Panel on Climate Change, IPCC) due to a lack of information with respect to validation and upscaling. For CH4 it is known that the light dose controls emission under ambient and artificial light conditions, but the atmospheric gas composition and other environmental factors can influence gas production as well. Several plant components, including pectin and leaf wax, have been suggested as a precursor for CH4 production, but underlying mechanisms are not fully known. For other gases such generating processes have not been established yet and mechanisms remain hypothetical. Field measurements of UV-induced emissions of the gases under natural light conditions are scarce. Therefore, realistic upscaling to the ecosystem level is uncertain for all gases. Nevertheless, based on empirical response curves, we propose the first global upscaling of UV-induced N2O and CO to illustrate emission ranges from a global perspective and as a contribution to an ongoing quantification process. When scaled to the global level, the UV-induced emission of CO by vegetation surfaces amounts to up to 22 Tg yr−1, which equals 11–44% of all the natural terrestrial plant sources accounted for so far. The total light-driven N2O emissions amount to 0.65–0.78 Tg yr−1, which equals 7–24% of the natural terrestrial source strength accounted for (range 3.3–9 Tg N yr−1). In this review, we summarize current knowledge, based on experimental work with sunlight and artificial light, and estimate potential emission ranges and uncertainties, placing the available data into perspective. We discuss the state of the art in proposed mechanisms, precursors and environmental relationships, we consider the relevance of measured emission rates, and we also suggest a range of future research topics. Furthermore we propose and describe methods and techniques that can be used for future research.

Keywords

Air pollution Atmospheric chemistry CH4 CO CO2 N2NMVOC NOx NOy Plants Short-chain hydrocarbons Stabile isotopes techniques Upscaling UV-A UV-B Vegetation 

Notes

Acknowledgements

We are thankful to Prof Ary Hoffmann for reading the manuscript and providing helpful suggestions for corrections and NordGen (The Nordic Genetic Resource Center) for providing seeds for the experiments. This work was supported by the FP7 EU Eclaire project.

References

  1. Althoff F, Jugold A, Keppler F (2010) Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. Chemosphere 80:286–292CrossRefPubMedGoogle Scholar
  2. Altimir N, Vesala T, Keronen P, Kulmala M, Hari P (2002) Methodology for direct field measurements of ozone flux to foliage with shoot chambers. Atmos Environ 36(1):19–29CrossRefGoogle Scholar
  3. Aphalo PJ, Albert A, McLeod A, Heikkilä A, Gómez I, Figueroa FL, Robson TM, Strid A (2012) Manipulating UV radiation. In: Aphalo PJ, Albert A, Björn LO, McLeod A, Robson TM, Rosenqvist E (eds) Beyond the visible: a handbook of best practice in plant UV photobiology. COST Action FA0906 UV4growth. University of Helsinki, Helsinki, p 176Google Scholar
  4. Baur P, Stulle K, Schonherr J, Uhlig B (1998) Absorption of UV-B to blue light radiation by leaf cuticles of selected crop plants. Gartenbauwissenschaft 63:145–152Google Scholar
  5. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon uptake: global distribution and covariation with climate. Science 329:834–838CrossRefPubMedGoogle Scholar
  6. Björn LO (1996) Effects of ozone depletion and increased UV-B on terrestrial ecosystems. Int J Environ Stud 51:217–243CrossRefGoogle Scholar
  7. Björn LO, McLeod A, Aphalo PJ, Albert A, Lindfors AV, Heikkilä A, Kolarž P, Ylianttila L, Zipoli G, Grifoni D, Huovinen P, Gómez I, Figueroa FL (2012). Quantifying UV radiation. In: Aphalo PJ, Albert A, Björn LO, McLeod A, Robson TM, Rosenqvist E (eds) Beyond the visible: a handbook of best practice in plant UV photobiology. COST Action FA0906 UV4growth. University of Helsinki, Helsinki, p 176Google Scholar
  8. Bloom AA, Lee-Taylor J, Madronich S, Messinger DJ, Palmer PI, Reay DS, McLeod AR (2010) Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. New Phytol 187:417–425CrossRefPubMedGoogle Scholar
  9. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B and Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  10. Brandt LA, Bohnet C, King JY (2009) Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J Geophys Res 114:G02004. doi: 10.1029/2008JG000772 Google Scholar
  11. Brown MJ, Parker GG, Posner NE (1994) A survey of ultraviolet-B radiation in forests. J Ecol 82:843–854CrossRefGoogle Scholar
  12. Bruhn D, Mikkelsen TN, Ambus P (2007) Aerobic emission of methane by terrestrial plant material in response to UV-irradiance. Eos Trans. Am Geophys Union 88(52), Fall Meet. Suppl., Abstract, B53A-0940Google Scholar
  13. Bruhn D, Mikkelsen TN, Obro J, Willats WGT, Ambus P (2009) Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material. Plant Biol 11:43–48CrossRefPubMedGoogle Scholar
  14. Bruhn D, Moller IM, Mikkelsen TN, Ambus P (2012) Terrestrial plant methane production and emission. Physiol Plant 144:201–209CrossRefPubMedGoogle Scholar
  15. Bruhn D, Albert KR, Mikkelsen TN, Ambus P (2013) UV-induced carbon monoxide emission from living vegetation. Biogeosciences 10:7877–7882CrossRefGoogle Scholar
  16. Bruhn D, Mikkelsen TN, Rolsted MMM, Egsgaard H, Ambus P (2014a) Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen. Plant Biol 16:512–516CrossRefPubMedGoogle Scholar
  17. Bruhn D, Albert KR, Mikkelsen TN, Ambus P (2014b) UV-induced N2O emission from plants. Atmos Environ 99:206–214CrossRefGoogle Scholar
  18. Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41:4032–4037CrossRefPubMedGoogle Scholar
  19. Caldwell MM (1981) Plant response to solar ultraviolet-B radiation. In Lange et al. (ed) Physiological plant ecology. Springer, Berlin, pp 170–186Google Scholar
  20. Caldwell MM, Teramura AH, Tevini M, Bornman JF, Bjorn LO, Kulandaivelu G (1995) Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio 24:166–173Google Scholar
  21. Caldwell MM, Searles PS, Flint SD, Barnes PW (1999) Terrestrial ecosystem responses to solar UV-B radiation mediated by vegetation, microbes and abiotic chemistry. In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell Science, Oxford, pp 241–262Google Scholar
  22. Cen YP, Bornman JF (1993) The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica-napus. Physiol Plant 87:249–255CrossRefGoogle Scholar
  23. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni, Piao S, Thornton P (2013). Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  24. Day TA, Zhang ET, Ruhland CT (2007) Effects of ultraviolet radiation accelerates mass and lignin loss of Larrea tridentate litter in the Sonoran Desert. Plant Ecol 193:185–194CrossRefGoogle Scholar
  25. de Klein C, Harvey M (2015) Nitrous oxide chamber methodology guidelines. Version 1.1 ISBN 978-0-478-40585-9 (online). Ministry for Primary Industries, WellingtonGoogle Scholar
  26. Deckmyn GE, Cayenberghs E, Ceulemans R (2001) UV-B and PAR in single and mixed canopies grown under different UV-B exclusions in field. Plant Ecol 154:125–133CrossRefGoogle Scholar
  27. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation, Global Biogeochem. Cycles 20:GB4003. doi: 10.1029/2005GB002672 CrossRefGoogle Scholar
  28. Derendorp L, Holzinger R, Röckmann T (2011a) UV-induced emissions of C2-C5 hydrocarbons from leaf litter. Environ Chem 8:602–611CrossRefGoogle Scholar
  29. Derendorp L, Quist JB, Holzinger R, Röckmann T (2011b) Emissions of H2 and CO from leaf litter of Sequoiadendron giganteum and their dependence on UV radiation and temperature. Atmos Environ 45:7520–7524CrossRefGoogle Scholar
  30. Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstappen F, Bouwmeester H, Voesenek LACJ, van der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. New Phytol 175:29–35CrossRefPubMedGoogle Scholar
  31. EPA (2010) Methane and nitrous oxide emissions from natural sources. Office of Atmospheric Programs (6207J), Washington, EPA 430-R-10-001Google Scholar
  32. Ferretti DF, Miller JB, White JWC, Lassey KR, Lowe DC, Etheridge DM (2007) Stable isotopes provide revised global limits of aerobic methane emissions from plants. Atmos Chem Phys 7:237–241CrossRefGoogle Scholar
  33. Fortems-Cheiney A, Chevallier F, Pison I, Bousquet P, Szopa S, Deeter MN, Clerbaux C (2011) Ten years of CO emissions as seen from Measurements of Pollution in the Troposphere (MOPITT). J Geophys Res 116:D05304CrossRefGoogle Scholar
  34. Fraser WT, Blei E, Fry SC, Newman MF, Reay DS, Smith KA, Mcleod AR (2015) Emission of methane, carbon monoxide, carbon dioxide and short-chain hydrocarbons from vegetation foliage under ultraviolet irradiation. Plant Cell Environ 38:980–989CrossRefPubMedPubMedCentralGoogle Scholar
  35. Grant RH (1997) Partitioning of biologically active radiation in plant canopies. Int J Biometeorol 40:26–40CrossRefGoogle Scholar
  36. Hari P, Raivonen M, Vesala T, Munger JW, Pilegaard K, Kulmala M (2003) Ultraviolet light and leaf emission of NOx. Nature 422:134CrossRefPubMedGoogle Scholar
  37. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013). Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  38. Hilboll A, Richter A, Burrows JP (2013) Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmos Chem Phys 13:4145–4169. doi: 10.5194/acp-13-4145-2013 CrossRefGoogle Scholar
  39. Horie O, Moortgat GK (1998) The effect of the addition of CO on the reaction of ozone with ethene. Chem Phys Lett 288:464–472CrossRefGoogle Scholar
  40. IPCC: Radiative Forcing of Climate Change, Ch 2. Climate Change 1995, The Science of Climate Change, Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Schimel D, Alves D, Enting I, Heimann M, Joos R, Raynaud D, Wigley T, Prather M, Derwent R, Ehhalt D, Eraser R, Sanhueza E, Zhou X, Jonas R, Charlson R, Rodhe H, Sadasivan S, Shine KR, Fouquart Y, Ramaswamy V, Solomon S, Srinivasan J, Albritton D, Derwent R, Isaksen L, Lal M, Wuebbles D, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 51–64, 1995Google Scholar
  41. IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, p 881Google Scholar
  42. IPCC (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  43. Isaksen I, Granier C, Myhre G, Berntsen T, Dalsren S, Gauss M, Klimont Z, Benestad R, Bousquet P, Collins W, Cox T, Eyring V, Fowler D, Fuzzi S, Jckel P, Laj P, Lohmann U, Maione M, Monks P, Prevot A, Raes F, Richter A, Rognerud B, Schulz M, Shindell D, Stevenson D, Storelvmo T, Wang WC, van Weele M, Wild M, Wuebbles D (2009) Atmospheric composition change: climate chemistry interactions. Atmos Environ 43:5138–5192CrossRefGoogle Scholar
  44. Jacobs JF, Koper GJM, Ursem WNJ (2007) UV protective coatings: a botanical approach. Prog Org Coat 58:166–171CrossRefGoogle Scholar
  45. Karabourniotis G, Bornman JF (1999) Penetration of UV-A, UV-B and blue light though the leaf trichome layers of two xeromorphic plants, olive and oak, measured by optical fibre microprobes. Physiol Plant 105:655–661CrossRefGoogle Scholar
  46. Keppler F, Hamilton JTG, Brass M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191CrossRefPubMedGoogle Scholar
  47. Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Brass M, Rockmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178:808–814CrossRefPubMedGoogle Scholar
  48. Khalil MAK, Rasmussen RA (1990) The global cycle of carbon monoxide: trends and mass balance. Chemosphere 20:227–242CrossRefGoogle Scholar
  49. Kim KH, Watanabe K, Menzel D, Freund H-J (2010) UV photo-dissociation and photodesorption of N2O on Ag(111). J Phys Condens Matter 22:084012CrossRefPubMedGoogle Scholar
  50. Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ (2006) A comment on the quantitative significance of aerobic methane release by plants. Funct Plant Biol 33:521–530CrossRefGoogle Scholar
  51. Kirschbaum MUF, Niinemets Ü, Bruhn D, Winthers AJ (2007) How important is aerobic methane release by plants? Funct Plant Sci Biotech 1:138–145Google Scholar
  52. Lee H, Rahn T, Throop HL (2012) An accounting of C-based trace gas release during abiotic plant litter degradation. Glob Chang Biol 18:1185–1195CrossRefGoogle Scholar
  53. Liakoura V, Manetas Y, Karabouniotis G (2001) Seasonal fluctuations in the concentration of UV-absorbing compounds in leaves of some Mediterranean plants under field conditions. Physiol Plant 111:491–500CrossRefPubMedGoogle Scholar
  54. Liakoura V, Bornmann JF, Karabourniotis G (2003) The ability of abaxial and adaxial epidermis of sun and shade leaves to attenuate UV-A and UV-B radiation in relation to the UV absorbing capacity of the whole leaf methanolic extracts. Physiol Plant 117:33–43CrossRefGoogle Scholar
  55. Long LM, Patel HP, Cory WC, Stapleton AE (2003) The maize epicuticular wax layer provides UV protection. Funct Plant Biol 30:75–81CrossRefGoogle Scholar
  56. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from paleoclimate archives. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  57. McLeod A, Keppler F (2010) Vegetation. In: Reay D, Smith P, van Amstel A (eds) Methane and climate change. Earthscan, London/Washington, pp 74–96Google Scholar
  58. McLeod AR, Fry SC, Loake GJ, Messenger DJ, Reay DS, Smith KA, Yun BW (2008) Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol 180:124–132CrossRefPubMedGoogle Scholar
  59. Messenger DJ, McLeod AR, Fry SC (2009) The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32:1–9CrossRefPubMedGoogle Scholar
  60. Mikkelsen TN, Ro-Poulsen H (2002) In situ autumn ozone fumigation of mature Norway spruce - effects on net photosynthesis. Phyton 42:97–104Google Scholar
  61. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  62. Parsons AJ, Newton PCD, Clark H, Kelliher FM (2006) Scaling methane emissions from vegetation. Trends Ecol Evol 21:423–424CrossRefPubMedGoogle Scholar
  63. Prasad SS (2002) A new model of N2O quantum yield in the UV photolysis of O-3/O-2/N-2 mixtures: contributions of electronically excited O-3 and O-3 center dot N-2. J Chem Phys 117:10104e10108CrossRefGoogle Scholar
  64. Prasad SS, Zipf EC (2008) Atmospheric production of nitrous oxide from excited ozone and its potentially important implications for global change studies. J Geophys Res Atmos 113, D15307CrossRefGoogle Scholar
  65. Raivonen M, Bonn B, Sanz MJ, Vesala T, Kulmala M, Hari P (2006) UV-induced NOy emissions from Scots pine: could they originate from photolysis of deposited HNO3? Atmos Environ 40:6201–6213CrossRefGoogle Scholar
  66. Raivonen M, Vesala T, Pirjola L, Altimir N, Keronen P, Kulmala M, Hari P (2009) Compensation point of NOx exchange: net result of NOx consumption and production. Agric For Meteorol 149:1073–1081CrossRefGoogle Scholar
  67. Röckmann T, Vigano I, Holzinger R, van Weelden H, Keppler F (2007) News about methane emission from plant matter. Eos Trans. Am Geophys Union 88(52), Fall Meet. Suppl., Abstract, B51F-05Google Scholar
  68. Rosenqvist E, Figueroa FL, Gómez I, Aphalo PJ (2012) Plant growing conditions. In: Aphalo PJ, Albert A, Björn LO, McLeod A, Robson TM, Rosenqvist E (eds) Beyond the visible: a handbook of best practice in plant UV photobiology. COST Action FA0906 UV4growth. University of Helsinki, Helsinki, p 176Google Scholar
  69. Rozema J, van de Staaij J, Björn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28CrossRefPubMedGoogle Scholar
  70. Rubasinghege G, Grassian VH (2009) Photochemistry of adsorbed nitrate on aluminum oxide particle surfaces. J Phys Chem A 113:7818–7825CrossRefPubMedGoogle Scholar
  71. Rubasinghege G, Spak SN, Stainer CO, Carmichael GR, Grassian VH (2011) Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate. Environ Sci Technol 45:2691–2697CrossRefPubMedGoogle Scholar
  72. Schade GW, Crutzen PJ (1999) CO emissions from degrading plant matter (II) estimate of a global source strength. Tellus B 51:909–918CrossRefGoogle Scholar
  73. Schade GW, Hofmann R-F, Crutzen PJ (1999) CO emissions from degrading plant matter, (I) measurements. Tellus B 51:889–908CrossRefGoogle Scholar
  74. Seiler W, Giehl H (1977) Influence of plants on the atmospheric carbon monoxide. Geophys Res Lett 8:329–332CrossRefGoogle Scholar
  75. Seiler W, Giehl H, Bunse G (1978) The influence of plants on atmospheric carbon monoxide and dinitrogen oxide. Pure Appl Geophys 116:439–451CrossRefGoogle Scholar
  76. Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science 326:716–718CrossRefPubMedGoogle Scholar
  77. Shulski MD, Walter-Shea EA, Hubbard KG, Yuen GY, Horst G (2004) Penetration of photosynthetic active radiation and ultra violet radiation into Alfalfa and Tall Fescue canopies. Agron J 96:1562–1571CrossRefGoogle Scholar
  78. Skiba U, Hargreaves KJ, Fowler D, Smith KA (1992) Fluxes of nitric and nitrous oxides from agricultural soils in a cool temperate climate. Atmos Environ 26:2477–2488CrossRefGoogle Scholar
  79. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New yorkGoogle Scholar
  80. Stocker TF, Qin D, Plattner G-K, Alexander LV, Allen SK, Bindoff NL, Bréon F-M, Church JA, Cubasch U, Emori S, Forster P, Friedlingstein P, Gillett N, Gregory JM, Hartmann DL, Jansen E, Kirtman B, Knutti R, Krishna Kumar K, Lemke P, Marotzke J, Masson-Delmotte V, Meehl GA, Mokhov II, Piao S, Ramaswamy V, Randall D, Rhein M, Rojas M, Sabine C, Shindell D, Talley LD,. Vaughan DG Xie S-P (2013) Technical summary. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  81. Sundqvist E, Crill P, Molder M, Vestin P, Lindroth A (2012) Atmospheric methane removal by boreal plants. Geophys Res Lett 39, L21806CrossRefGoogle Scholar
  82. Tarr MA, Miller WL, Zapp RG (1995) Direct carbon monoxide photoproduction from plant matter. J Geophys Res 100:11403–11413CrossRefGoogle Scholar
  83. Tiiva P, Rinnan R, Faubert P, Rasanen J, Holopainen T, Kyro E, Holopainen JK (2007) Isoprene emission from a subarctic peatland under enhanced UV-B radiation. New Phytol 176:346–355CrossRefPubMedGoogle Scholar
  84. Ueta I, Mizuguchi A, Tani K, Kawakubo S, Saito Y (2013) Rapid temperature-programmed separation of carbon monoxide and carbon dioxide on a packed capillary column in gas chromatography: application to the evaluation of photocatalytic activity of TiO2. Anal Sci 29:673–676CrossRefPubMedGoogle Scholar
  85. Vigano I, Holzinger R, Röckman T (2007) The isotope signature of methane emitted from plant matter upon irradiation with UV light. Eos Trans. Am Geophys Union 88(52), Fall Meet. Suppl., Abstract, B53A-0938Google Scholar
  86. Vigano I, van Weelden H, Holzinger R, Keppler F, McLeod A, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5:937–947CrossRefGoogle Scholar
  87. Vigano I, Röckmann T, Holzinger R, van Dijk A, Keppler F, Greule M, Brand WA, Geilmann H, van Weelden H (2009) The stable isotope signature emitted from plant material under UV irradiation. Atmos Environ 43:5637–5646CrossRefGoogle Scholar
  88. Worden HM, Deeter MN, Frankenberg C, George M, Nichitiu F, Worden J, Aben I, Bowman KW, Clerbaux C, Coheur PF, de Laat ATJ, Detweiler R, Drummond JR, Edwards DP, Gille JC, Hurtmans D, Luo M, Martínez-Alonso S, Massie S, Pfister G, Warner JX (2013) Decadal record of satellite carbon monoxide observations. Atmos Chem Phys 13:837–850CrossRefGoogle Scholar
  89. Yonemura S, Morokuma M, Kawashima S, Tsuruta H (1999) Carbon monoxide photoproduction from rice and maize leaves. Atmos Environ 33:2915–2920CrossRefGoogle Scholar
  90. Yoshimura H, Zhu H, Wu Y, Ma R (2010) Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction. Int J Biometeorol 54:179–191CrossRefPubMedGoogle Scholar
  91. Yurganov L, McMillan W, Grechko E, Dzhola A (2010) Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers. Atmos Chem Phys 10:3479–3494CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Teis Nørgaard Mikkelsen
    • 1
    Email author
  • Dan Bruhn
    • 2
  • Per Ambus
    • 3
  1. 1.Department of Environmental EngineeringTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of Chemistry and BioscienceAalborg UniversityAalborg EastDenmark
  3. 3.Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations