Skip to main content

Exploration of Sweet Immunity to Enhance Abiotic Stress Tolerance in Plants: Lessons from CAM

  • Chapter
  • First Online:

Part of the book series: Progress in Botany ((BOTANY,volume 78))

Abstract

The concept of ‘sweet immunity’ or ‘sugar-enhanced defence’ is based on the accumulating evidence that sweet, endogenous saccharides might act as signalling molecules that are activated by exposure to stress and hence initiate signal amplification and lead to more rapid and robust activation of defence, immunity and stress tolerance. Sugars such as glucose, fructose and sucrose have acquired important regulatory functions in evolution and are becoming more and more recognized as signalling molecules in plants controlling gene expression related to plant metabolism, stress resistance and development. This offers opportunities for ‘sweet priming’, defined as a physiological process that prepares plants for a faster and/or stronger defence response to future stress conditions, but does not impose the costs associated with full implementation of an induced defence response. Future possibilities to substitute toxic agrochemicals with biodegradable sugar-(like) compounds in agricultural and horticultural practice requires a thorough understanding of how sugars can play a crucial role in perceiving, anticipating and counteracting abiotic stresses. In this review, the physiological responses of crassulacean acid metabolism (CAM) plants to different conditions of abiotic stress will be discussed with particular attention to sucrose dynamics. CAM plants are ideally suited to different abiotic stress conditions and carbohydrate cycling and availability are of paramount importance for plant growth, photosynthesis and homeostasis. By evaluating the plethora of effects sugars can exert on plant metabolism, growth and development the possibilities for sugars as potential priming agents to enhance abiotic stress tolerance will be explored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ana Sofia Duque, André Martinho de Almeida, Anabela Bernardes da Silva, Jorge Marques da Silva, Ana Paula Farinha, Dulce Santos, Pedro Fevereiro and Susana de Sousa Araújo (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. In: Vahdati K (ed) Abiotic stress - plant responses and applications in agriculture. InTech, Rijeka, Croatia. doi:10.5772/52779

    Google Scholar 

  • Antony E, Borland AM (2009) The role and regulation of sugar transporters in plants with crassulacean acid metabolism. Prog Bot 70:127–143

    Article  CAS  Google Scholar 

  • Asada K (1999) The water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Behzadipour M, Ratajczak R, Faist K, Pawlitschek P, Tremolieres A, Kluge M (1998) Phenotypic adaptation of tonoplast fluidity to growth temperature in the CAM plant Kalanchoe daigremontiana Ham. et Per. is accompanied by changes in the membrane phospholipid and protein composition. J Membr Biol 166:61–70

    Article  CAS  PubMed  Google Scholar 

  • Birch ANE, Roberson WM, Geoghegan IE, MC-Gavin WJ, Alpheyt JW, Porter EA (1993) DMDP – a plant-derived sugar analogue with systemic activity against plant parasitic nematodes. Nematologica 39:521–535

    Google Scholar 

  • Bolouri-Moghaddam MR, Van den Ende W (2012) Sugars and plant innate immunity. J Exp Bot 63:3989–3998

    Article  CAS  PubMed  Google Scholar 

  • Bolouri-Moghaddam MR, Van den Ende W (2013a) Sweet immunity in the plant circadian regulatory network. J Exp Bot 64:1439–1449

    Article  CAS  PubMed  Google Scholar 

  • Bolouri-Moghaddam MR, Van den Ende W (2013b) Sugars, the clock and transition to flowering. Frontier Plant Sci 4, 4

    Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signaling and antioxidant network connections in plant cells. FEBS J 277:2022–2037

    Article  CAS  PubMed  Google Scholar 

  • Borland AM (1996) A model for the portioning of photosynthetically fixed carbon during the C3-CAM transition in Sedum telephium. New Phytol 134:433–444

    Article  CAS  Google Scholar 

  • Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC, Maxwell C (1993) Short-term changes in carbon-isotope discrimination in the C3/CAM intermediate Clusia minor L. growing in Trinidad. Oecologia 95:444–453

    Article  Google Scholar 

  • Borland AM, Hartwell J, Jenkins GI, Wilkins MB, Nimmo HG (1999) Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in crassulacean acid metabolism. Plant Physiol 121:889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borland AM, Zambrano VAB, Ceusters J, Shorrock K (2011) The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world. New Phytol 191:619–633

    Article  CAS  PubMed  Google Scholar 

  • Boxall SF, Foster JM, Bohnert HJ, Cushman JC, Nimmo HG, Hartwell J (2005) Conservation and divergence of circadian clock operation in a stress-inducible crassulacean acid metabolism species reveals clock compensation against stress. Plant Physiol 137:969–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandon PC (1967) Temperature features of enzymes affecting crassulacean acid metabolism. Plant Physiol 42:977–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broetto F, Lüttge U, Ratajczak R (2002) Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum L. Funct Plant Biol 29:13–23

    Article  CAS  Google Scholar 

  • Brulfert J, Guerrier D, Queiroz O (1973) Photoperiodism and enzyme activity: balance between inhibition and induction of the crassulacean acid metabolism. Plant Physiol 51:220–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brulfert J, Kluge M, Güclü S, Queiroz O (1988) Interaction of photoperiod and drought as CAM inducing factors in Kalanchoë blossfeldiana Poelln., Cv Tom Thumb. J Plant Physiol 133:222–227

    Article  CAS  Google Scholar 

  • Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107:9452–9457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan-Bollig IC, Kluge M, Müller D (1984) Kinetic changes with temperature of phosphoenolpyruvate carboxylase from a CAM plant. Plant Cell Environ 7:63–70

    Article  CAS  Google Scholar 

  • Castillo FJ (1996) Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107:469–477

    Article  Google Scholar 

  • Ceusters J, Borland AM, Londers E, Verdoodt V, Godts C, De Proft M (2008) Diel shifts in carboxylation pathway and metabolite dynamics in the CAM bromeliad Aechmea ‘Maya’ in response to elevated CO2. Ann Bot 3:389–397

    Article  CAS  Google Scholar 

  • Ceusters J, Borland AM, De Proft MP (2009a) Drought adaptation in plants with crassulacean acid metabolism involves the flexible use of different storage carbohydrate pools. Plant Signal Behav 4:212–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceusters J, Borland AM, Londers E, Verdoodt V, Godts C, De Proft MP (2009b) Differential usage of storage carbohydrates in the CAM bromeliad Aechmea ‘Maya’ during acclimation to drought and recovery from dehydration. Physiol Plant 135:174–184

    Article  CAS  PubMed  Google Scholar 

  • Ceusters J, Borland AM, Ceusters N, Verdoodt V, Godts C, De Proft P (2010) Seasonal influences on carbohydrate metabolism in the CAM bromeliad Aechmea ‘Maya’: consequences for carbohydrate partitioning and growth. Ann Bot 105:301–309

    Article  CAS  PubMed  Google Scholar 

  • Ceusters J, Borland AM, Godts C, Londers E, Croonenborghs S, Van Goethem D, De Proft MP (2011) Crassulacean acid metabolism under severe light limitation: a matter of plasticity in the shadows? J Exp Bot 62:283–291

    Article  CAS  PubMed  Google Scholar 

  • Ceusters J, Borland AM, Taybi T, Frans M, Godts C, De Proft MP (2014) Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism. J Exp Bot 65:3705–3714

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen WS, Liu HY, Liu ZH, Yang L, Chen WH (1994) Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiol Plant 90:391–395

    Article  CAS  Google Scholar 

  • Chen WH, Tseng YC, Liu YC, Chuo CM, Chen PT, Tseng KM, Yeh YC, Ger MJ, Wang HL (2008) Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis aphrodite. Plant Cell Rep 27:1667–1675

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci U S A 95:4784–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Ciereszko I, Johansson H, Kleczkowski LA (2004) Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. J Plant Physiol 162:343–353

    Article  CAS  Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    Article  CAS  PubMed  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  CAS  Google Scholar 

  • Croonenborghs S, Ceusters J, Londers E, De Proft MP (2009) Effects of elevated CO2 on growth and morphological characteristics of ornamental bromeliads. Sci Hortic 121:192–198

    Article  CAS  Google Scholar 

  • Cushman JC (2001) Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 127:1439–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman JC, Borland AM (2002) Induction of crassulacean acid metabolism by water limitation. Plant Cell Environ 25:295–310

    Article  CAS  PubMed  Google Scholar 

  • De Bruyne L, Hofte M, De Vleesschauwer D (2014) Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant 7:943–959

    Article  PubMed  CAS  Google Scholar 

  • Debnath M, Pandey M, Bisen PS (2011) An OMICS approach to understand the plant abiotic stress. OMICS 15:739–762

    Article  CAS  PubMed  Google Scholar 

  • Demel RE, Dorrepaal E, Ebskamp MJM, Smeekens S, de Kruijff B (1998) Fructans interact strongly with model membranes. Biochim Biophys Acta 1375:36–42

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, van Loon JJA (2014) Chemical ecology of phytohormones: how plants integrate responses to complex and dynamic environments. J Chem Ecol 40:653–656

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Borland AM, Haslam RP, Griffiths H, Maxwell K (2002) Crassulacean acid metabolism: plastic fantastic. J Exp Bot 53:569–580

    Article  CAS  PubMed  Google Scholar 

  • Eveland AL, Jackson DP (2011) Sugars, signalling and plant development. J Exp Bot 63:3367–3377

    Article  PubMed  CAS  Google Scholar 

  • Farrar J, Pollock C, Gallagher J (2000) Sucrose and the integration of metabolism in vascular plants. Plant Sci 154:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, De Lorenzo G (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 4:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Gibson SI (2001) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol 5:26–32

    Article  Google Scholar 

  • Frank JH (2005) Phytotelmata. Encyclopedia of Entomology [Internet]. Springer Science + Business Media; 1718–20. Available from: http://dx.doi.org/10.1007/0-306-48380-7_3252

  • Friemert V, Kluge M, Smith JAC (1986) Net CO2 output by CAM plants in the light: the roe of leaf conductance. Physiol Plant 68:353–358

    Article  Google Scholar 

  • Friemert V, Heininger D, Kluge M, Ziegler H (1988) Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in crassulacean acid metabolism plants. Planta 174:453–461

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Sun L, Yang X, Liu JX (2013a) Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS One 8, e64643. doi:10.1371/journal.pone.0064643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang N, Xu S-S, Li Y, Wang Y, Wang G-X (2013b) Exogenous application of trehalose induced H2O2 production and stomatal closure in Vicia faba. Biol Plant 57:380–384

    Article  CAS  Google Scholar 

  • Geigenberger P, Geiger M, Stitt M (1998) High-temperature perturbation of starch synthesis is attributable to inhibition of ADP-glucose pyrophosphorylase by decreased levels of glycerate-3-phosphate in growing potato tubers. Plant Physiol 117:1307–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signaling network. J Exp Bot 55:253–264

    Article  CAS  PubMed  Google Scholar 

  • Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M (2013) Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence. Funct Ecol 27:S599–S609

    Article  Google Scholar 

  • Guo WJ, Lee N (2006) Effect of leaf and plant age, and day/night temperature on net CO2 uptake in Phalaenopsis amabilis var. formosa. J Am Soc Hortic Sci 131(3):320–326

    Google Scholar 

  • Gupta AK, Kaur N (2005) Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776

    Article  CAS  PubMed  Google Scholar 

  • Haydon MJ, Bell LJ, Webb AAR (2011) Interactions between plant circadian clocks and solute transport. J Exp Bot 62:2333–2348

    Article  CAS  PubMed  Google Scholar 

  • Herbers K, Meuwly P, Frommer W, Métraux JP, Sonnewald U (1996a) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbers K, Meuwly P, Métraux JP, Sonnewald U (1996b) Salicyclic acid independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett 397:239–244

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom KO, Mantyla E, Welin B, Mandal A, Palva ET, Tunnela OE, Londesborough J (1996) Drought tolerance in tobacco. Nature 379:683–684

    Article  Google Scholar 

  • Horacio P, Martinez-Noel G (2013) Sucrose signalling in plants: a world yet to be explored. Plant Signal Behav 8, e23316

    Article  CAS  Google Scholar 

  • Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signalling: perspectives in plants under arsenic stress. Ecotoxicol Environ Saf 114:126–133

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008) Alterations in morphological parameters and photosynthetic pigment responses in Catharanthus roseus under soil water deficits. Colloids Surf B Biointerfaces 62:298–303

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jang JC, León P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson R, Ryan CA (1990) Wound-inducible potato inhibitor II genes: enhancement of expression by sucrose. Plant Mol Biol 14:527–536

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kano A, Hosotani K, Gomi K et al (2011) d-Psicose induces upregulation of defence-related genes and resistance in rice against bacterial blight. J Plant Physiol 168:1852–1857

    Article  CAS  PubMed  Google Scholar 

  • Kholodova V, Volkov K, Abdeyeva A, Kuznetsov V (2011) Water status in Mesembryanthemum crystallinum under heavy metal stress. Environ Exp Bot 71:382–389

    CAS  Google Scholar 

  • Kliemchen A, Schomburg M, Galla HJ, Lüttge U, Kluge M (1993) Phenotypic changes in the fluidity of the tonoplast membrane of crassulacean acid metabolism plants in response to temperature and salinity stress. Planta 189:403–409

    Article  CAS  PubMed  Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, Berlin

    Book  Google Scholar 

  • Knaupp M, Mishra K, Nedbal L, Heyer AG (2011) Evidence for a role of raffinose in stabilizing photosystem II during freeze-thaw cycles. Planta 234:477–486

    Article  CAS  PubMed  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  CAS  PubMed  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  CAS  PubMed  Google Scholar 

  • Kunz S, Gardeström P, Pesquet E, Kleczkowski LA (2015) Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis. Front Plant Sci 6:525

    Article  PubMed  PubMed Central  Google Scholar 

  • Lastdrager J, Hanson J, Smeekens S (2014) Sugar signals and the control of plant growth and development. J Exp Bot 65:799–807

    Article  CAS  PubMed  Google Scholar 

  • León P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Qiu N, Lu Q, Wang B, Kuang T (2003) PS II photochemistry, thermal energy dissipation, and the xanthophyll cycle in Kalanchoë daigremontiana exposed to a combination of water stress and high light. Physiol Plant 118:173–182

    Article  CAS  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Lüttge U (2000) The tonoplast functioning as the master switch for circadian regulation of crassulacean acid metabolism. Planta 211:761–769

    Article  PubMed  Google Scholar 

  • Lüttge U (2002) CO2-concentrating: consequences in crassulacean acid metabolism. J Exp Bot 53:2131–2142

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lüttge U (2006) Photosynthetic flexibility and ecological plasticity: questions and lessons from Clusia, the only CAM tree, in the neotropics. New Phytol 171:7–25

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U (2010) Photorespiration in Phase III of crassulacean acid metabolism: evolutionary and ecophysiological implications. Progr Bot 72:371–384

    Article  CAS  Google Scholar 

  • Martínez-Noël GMA, Tognetti JA, Salerno GL, Wiemken A, Pontis HG (2009) Protein phosphatase activity and sucrose-mediated induction of fructan synthesis in wheat. Planta 230:1071–1079

    Article  PubMed  CAS  Google Scholar 

  • Matros A, Peshev D, Peukert M, Mock HP, Van den Ende W (2015) Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. Plant J 82:822–839

    Article  CAS  PubMed  Google Scholar 

  • Miszalski Z, Slesak I, Niewiadomska E, Baczek R, Lüttge U, Ratajezak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179

    Article  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  PubMed  Google Scholar 

  • Moore BD, Sheen J (1999) Plant sugar sensing and signaling – a complex reality. Trends Plant Sci 4:250

    Article  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Roles of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Moreira Lobo AK, de Oliveira M, Lima Neto MC, Caruso Machado E, Vasconcelos Ribeiro R, Gomes Silveira JA (2015) Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. J Plant Physiol 179:113–121

    Article  CAS  Google Scholar 

  • Moya JL, Ros R, Picazo I (1993) Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynth Res 36:75–80

    Article  CAS  PubMed  Google Scholar 

  • Nägele T, Weckwerth W (2014) Mathematical modeling reveals that metabolic feedback regulation of SnRK1 and hexokinase is sufficient to control sugar homeostasis from energy depletion to full recovery. Front Plant Sci 5:365

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie G, Hendrix DL, Webber AN, Kimball BA, Long SP (1995) Increased accumulation of carbohydrates and decreased photo- synthetic gene transcript levels in wheat grown at an elevated CO, concentration in the field. Plant Physiol 108:975–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel PS (1983) Nutrient levels in Cacti – relation to nocturnal acid accumulation and growth. Am J Bot 70:1244–1253

    Article  CAS  Google Scholar 

  • Nobel PS, Berry WL (1985) Element responses of agaves. Am J Bot 72:686–694

    Article  CAS  Google Scholar 

  • Nobel PS, Lüttge U, Heuer S, Ball E (1984) Influence of applied NaCl on crassulacean acid metabolism and ionic levels in a cactus, Cereus validus. Plant Physiol 75:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordoñez-Salanueva CA, Seal CE, Pritchard HW, Orozco-Segovia A, Canales-Martinez M, Flores-Ortiz CM (2015) Cardinal temperatures and thermal time in Polaskia Backeb (Cactaceae) species: effect of projected soil temperature increase and nurse interaction on germination timing. J Arid Environ 115:73–80

    Article  Google Scholar 

  • Osakabe K, Osakabe Y (2012) Plant light stress. In: Encyclopaedia of life sciences. Wiley, Chichester. http://www.els.net. doi:10.1002/9780470015902.a0001319.pub2

  • Osmond CB (1981) Crassulacean acid metabolism: a curiosity in context. Ann Rev Plant Physiol 29:379–414

    Article  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the arte and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Pego JV, Kortstee AJ, Huijser C, Smeekens S (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  CAS  PubMed  Google Scholar 

  • Peshev D, Vergauwen R, Moglia A, Hideg E, Van den Ende W (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64:1025–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peukert M, Thiel J, Peshev D, Weschke W, Van den Ende W, Mock HP, Matros A (2014) Spatio-temporal dynamics of fructan metabolism in developing barley grains. Plant Cell 26:3728–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224:556–568

    Article  CAS  PubMed  Google Scholar 

  • Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282

    Article  CAS  PubMed  Google Scholar 

  • Ramon M, Rolland F, Sheen J (2008) Sugar sensing and signaling. Arabidopsis Book 6:e0117. doi:10.1199/tab.0117

    Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars – metabolism, sensing and abiotic stress. Plant Signal Behav 4(5):388–393. doi:10.4161/psb.4.5.8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sairanen I, Novák O, Pencík A, Ikeda Y, Jones B, Sandberg G, Ljung K (2012) Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24:4907–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheen J (1994) Feedback control of gene expression. Photosynth Res 39:427–438

    Article  CAS  PubMed  Google Scholar 

  • Sheen J (2014) Master regulators in plant glucose signaling networks. J Plant Biol 57:67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Spalding MH, Stumpf DK, Ku MSB, Burris RH, Edwards GE (1979) Crassulacean acid metabolism and diurnal variations of internal CO2 and O2-concentrations in Sedum praealtum DC. Funct Plant Biol 6:557–567

    CAS  Google Scholar 

  • Tarkowski ŁP, Van den Ende W (2015) Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Front Plant Sci 6:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Tayeh C, Randoux B, Dorothee V et al (2014) Exogenous trehalose induces defenses in wheat before and during a biotic stress caused by powdery mildew. Phytopathology 104:293–305

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newvill M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting IP (1985) Crassulacean acid metabolism. Ann Rev Plant Physiol 36:595–622

    Article  CAS  Google Scholar 

  • Tognetti JA, Pontis HG, Martínez-Noël GM (2013) Sucrose signaling in plants: a world yet to be explored. Plant Signal Behav 8(3):e23316

    Google Scholar 

  • Trouvelot S, Héloir MC, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M (2014) Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front Plant Sci 5:592

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai AY-L, Gazzarrini S (2014) Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci 5:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Van den Ende W (2013) Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci 4:247

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W, El-Esawe SK (2014) Sugar signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses? Environ Exp Bot 108:4–13

    Article  CAS  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Ruan Y-L (2013) Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci 4:163

    PubMed  PubMed Central  Google Scholar 

  • Willemoës JG, Beltrano J, Montaldi ER (1988) Diagravitropic growth promoted by high sucrose contents in Paspalum vaginatum, and its reversion by gibberellic acid. Can J Botany 66:2035–2037

    Google Scholar 

  • Winter K, Smith JAC (1996) Crassulacean acid metabolism: current status and perspectives. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry. Ecophysiology and evolution. Springer, Berlin, pp 230–246

    Chapter  Google Scholar 

  • Winter K, Aranda J, Holtum JAM (2005) Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. Funct Plant Biol 32:381–388

    Article  CAS  Google Scholar 

  • Wolf S, Marani A, Rudich J (1991) Effect of temperature on carbohydrate-metabolism in potato plants. J Exp Bot 42:619–625

    Article  CAS  Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten HM, Stitt M, Lunn EJ (2014) The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signaling by Tre6P. J Exp Bot 65:1051–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Li T, Yang J, He Z, Lu L, Meng F (2006) Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224:185–195

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Cushman J, Borland A, Edwards E, Wullschleger S, Tuskan G, Owen N, Griffiths H, Smith J, De Paoli H, Weston D, Cottingham R, Hartwell J, Davis S, Silveria K, Ming R, Schlaugh K, Abraham P, Stewart R, Guo H, Albion R, Ha J, Lim S, Wone B, Yim W, Garcia T, Mayer J, Petereit J, Nair S, Casey E, Hettich R, Ceusters J, Ranjan P, Palla K, Yin H, Reyes-Garcia C, Andrade J, Freschi L, Dever L, Boxall S, Walker J, Davies J, Bupphada P, Kadu N, Winter K, Sage R, Aguilar C, Schmutz J, Jenkins J, Holtum J (2015) A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter drier world. New Phytol 207:491–504

    Article  CAS  PubMed  Google Scholar 

  • Yoon YJ, Mobin M, Hahn EJ, Paek KY (2009) Impact of in vitro CO2 enrichment and sugar deprivation on acclamatory responses of Phalaenopsis plantlets to ex vitro conditions. Environ Exp Bot 65:183–188

    Article  CAS  Google Scholar 

  • Yu SM (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121:687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Ceusters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ceusters, N., Van den Ende, W., Ceusters, J. (2016). Exploration of Sweet Immunity to Enhance Abiotic Stress Tolerance in Plants: Lessons from CAM. In: Cánovas, F., Lüttge, U., Matyssek, R. (eds) Progress in Botany Vol. 78. Progress in Botany, vol 78. Springer, Cham. https://doi.org/10.1007/124_2016_1

Download citation

Publish with us

Policies and ethics