Skip to main content

Covering Many or Few Points with Unit Disks

  • Conference paper
Approximation and Online Algorithms (WAOA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4368))

Included in the following conference series:

Abstract

Let P be a set of n weighted points. We study approximation algorithms for the following two continuous facility-location problems.

In the first problem we want to place m unit disks, for a given constant m≥1, such that the total weight of the points from P inside the union of the disks is maximized. We present a deterministic algorithm that can compute, for any ε>0, a (1−ε)-approximation to the optimal solution in O(n logn + ε \(^{{\rm -4}{\it m}}\)log\(^{\rm 2{\it m}}\) (1/ε)) time.

In the second problem we want to place a single disk with center in a given constant-complexity region X such that the total weight of the points from P inside the disk is minimized. Here we present an algorithm that can compute, for any ε>0, with high probability a (1+ε)-approximation to the optimal solution in O(n (log3 n + ε − 4 log2 n )) expected time.

MdB was supported by the Netherlands’ Organisation for Scientific Research (NWO) under project no. 639.023.301. SC was partially supported by the European Community Sixth Framework Programme under a Marie Curie Intra-European Fellowship, and by the Slovenian Research Agency, project J1-7218.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Hagerup, T., Ray, R., Sharir, M., Smid, M., Welzl, E.: Translating a planar object to maximize point containment. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, p. 42. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Aronov, B., Har-Peled, S.: On approximating the depth and related problems. In: SODA 2005, pp. 886–894 (2005)

    Google Scholar 

  3. Bose, P., van Kreveld, M., Maheshwari, A., Morin, P., Morrison, J.: Translating a regular grid over a point set. Comput. Geom. Theory Appl. 25, 21–34 (2003)

    MATH  Google Scholar 

  4. Cabello, S., Díaz Báñez, J.M., Seara, C., Sellarès, J.A., Urrutia, J., Ventura, I.: Covering point sets with two disjoint disks or squares. Manuscript available at  http://www.fmf.uni-lj.si/~cabello/publications/ ; Preliminary version appeared at EWCG 2005

  5. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York (2001)

    Google Scholar 

  6. Chazelle, B.: The discrepancy method in computational geometry. In: Handbook of Discrete and Computational Geometry, pp. 983–996. CRC Press, Boca Raton (2004)

    Google Scholar 

  7. Chazelle, B., Lee, D.T.: On a circle placement problem. Computing 36, 1–16 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  10. Drezner, Z.: On a modified one-center model. Management Science 27, 848–851 (1991)

    Article  Google Scholar 

  11. Drezner, Z., Wesolowsky, G.O.: Finding the circle or rectangle containing the minimum weight of points. Location Science 2, 83–90 (1994)

    MATH  Google Scholar 

  12. Gajentaan, A., Overmars, M.H.: On a class of O(n 2) problems in computational geometry. Comput. Geom. Theory Appl. 5, 165–185 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Katz, M.J., Kedem, K., Segal, M.: Improved algorithms for placing undesirable facilities. Computers and Operations Research 29, 1859–1872 (2002)

    Article  MathSciNet  Google Scholar 

  14. Katz, M.J., Sharir, M.: An expander-based approach to geometric optimization. SIAM J. Computing 26, 1384–1408 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matoušek, J.: Approximations and optimal geometric divide-an-conquer. J. Comput. Syst. Sci. 50, 203–208 (1995)

    Article  Google Scholar 

  16. Plastria, F.: Continuous covering location problems. In: Hamacher, H., Drezner, Z. (eds.) Location Analysis: Theory and Applications, ch. 2, pp. 39–83. Springer, Heidelberg (2001)

    Google Scholar 

  17. Sharir, M.: On k-sets in arrangements of curves and surfaces. Discrete Comput. Geom. 6, 593–613 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Berg, M., Cabello, S., Har-Peled, S. (2007). Covering Many or Few Points with Unit Disks. In: Erlebach, T., Kaklamanis, C. (eds) Approximation and Online Algorithms. WAOA 2006. Lecture Notes in Computer Science, vol 4368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11970125_5

Download citation

  • DOI: https://doi.org/10.1007/11970125_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69513-4

  • Online ISBN: 978-3-540-69514-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics