Self-deployment Algorithms for Mobile Sensors on a Ring

  • Paola Flocchini
  • Giuseppe Prencipe
  • Nicola Santoro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4240)


We consider the self-deployment problem in a ring for a network of identical sensors: starting from some initial random placement in the ring, the sensors in the network must move, in a purely decentralized and distributed fashion, so to reach in finite time a state of static equilibrium in which they evenly cover the ring. A self-deployment algorithm is exact if within finite time the sensors reach a static uniform configuration: the distance between any two consecutive sensors along the ring is the same, d; the self-deployment algorithm is ε-approximate if the distance between two consecutive sensors is between dε and d + ε.

We prove that exact self-deployment is impossible if the sensors do not share a common orientation of the ring.

We then consider the problem in an oriented ring. We prove that if the sensors know the desired final distance d, then exact self-deployment is possible. Otherwise, we present another protocol based on a very simple strategy and prove that it is ε -approximate for any chosen ε> 0.

Our results show that a shared orientation of the ring is an important computational and complexity factor for a network of mobile sensors operating in a ring.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative Mobile Robotics: Antecedents and Directions. In: IEEE/TSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, pp. 226–234 (1995)Google Scholar
  2. 2.
    Chatzigiannakis, I., Markou, M., Nikoletseas, S.: Distributed Circle Formation for Anonymous Oblivious Robots. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 159–174. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 228–239. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 79–88. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Cohen, R., Peleg, D.: Local Algorithms for Autonomous Robot Systems. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 29–43. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Défago, X., Konagaya, A.: Circle Formation for Oblivious Anonymous Mobile Robots with No Common Sense of Orientation. In: Workshop on Principles of Mobile Computing, pp. 97–104 (2002)Google Scholar
  7. 7.
    Dijkstra, E.W.: Selected Writings on Computing: A Personal Perspective, pp. 34–35. Springer, New York (1982)zbMATHGoogle Scholar
  8. 8.
    Flocchini, P., Prencipe, G., Santoro, N.: Self-Deployment Algorithms for Mobile Sensors on a Ring. Technical Report TR-2006-02, University of Ottawa (2006)Google Scholar
  9. 9.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard Tasks for Weak Robots: The Role of Common Knowledge in Pattern Formation by Autonomous Mobile Robots. In: Proc.10th International Symposium on Algorithm and Computation, pp. 93–102 (1999)Google Scholar
  10. 10.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Pattern Formation by Autonomous Robots Without Chirality. In: Proc. 8th Int. Colloquium on Structural Information and Communication Complexity, pp. 147–162 (June 2001)Google Scholar
  11. 11.
    Heo, N., Varshney, P.K.: A Distributed Self Spreading Algorithm For Mobile Wireless Sensor Networks. In: Proceedings IEEE Wireless Communication and Networking Conference, vol. 3, pp. 1597–1602 (2003)Google Scholar
  12. 12.
    Howard, A., Mataric, M.J., Sukhatme, G.S.: An Incremental Self-deployment Algorithm for Mobile Sensor Networks. Autonomous Robots 13(2), 113–126 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile Sensor Network Deployment Using Potential Fields: A Distributed, Scalable Solution to The Area Coverage Problem. In: Proceedings of the 6th International Symposium on Distributed Autonomous Robotics Systems (DARS 2002), pp. 299–308 (2002)Google Scholar
  14. 14.
    Katreniak, B.: Biangular Circle Formation by Asynchronous Mobile Robots. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 185–199. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Loo, L., Lin, E., Kam, M., Varshney, P.: Cooperative Multi-Agent Constellation Fonnation Under Sensing and Communication Constraints. Cooperative Control and Optimization, 143–170 (2002)Google Scholar
  16. 16.
    Prencipe, G.: The Effect of Synchronicity on the Behavior of Autonomous Mobile Robots. Theory of Computing Systems 38, 539–558 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Samia, S., Défago, X., Katayama, T.: Convergence Of a Uniform Circle Formation Algorithm for Distributed Autonomous Mobile Robots. In: Journés Scientifiques Francophones (JSF), Tokio, Japan (2004)Google Scholar
  18. 18.
    Sugihara, K., Suzuki, I.: Distributed Algorithms for Formation of Geometric Patterns with Many Mobile Robots. Journal of Robotics Systems 13, 127–139 (1996)zbMATHCrossRefGoogle Scholar
  19. 19.
    Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. Siam J. Computing 28(4), 1347–1363 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tanaka, O.: Forming a Circle by Distributed Anonymous Mobile Robots. Technical report, Department of Electrical Engineering, Hiroshima University, Hiroshima, Japan (1992)Google Scholar
  21. 21.
    Wang, G., Cao, G., La Porta, T.: Movement-assisted Sensor Deployment. In: Proceedings of IEEE INFOCOM, vol. 4, pp. 2469–2479 (2004)Google Scholar
  22. 22.
    Zou, Y., Chakrabarty, K.: Sensor Deployment and Target Localization in Distributed Sensor Networks. ACM Transactions on Embedded Computing Systems 3(1), 61–91 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paola Flocchini
    • 1
  • Giuseppe Prencipe
    • 2
  • Nicola Santoro
    • 3
  1. 1.School of Information Technology and EngineeringUniversity of OttawaCanada
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations