Advertisement

Visual Knowledge Annotation and Management by Using Qualitative Spatial Information

  • Pedro José Vivancos-Vicente
  • Jesualdo Tomás Fernández-Breis
  • Rodrigo Martínez-Béjar
  • Rafael Valencia-García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4303)

Abstract

The wide use of the Internet and the increasingly improvement of communication technologies have led users to need to manage multimedia information. In particular, there is an ample consensus about the necessity of new computational systems capable of processing images and “understand” what they contain. Such systems would ideally allow to retrieve multimedia content, to improve the way of storing it or to process the images to get some information interesting for the user. This paper presents a methodology for semi-automatically extracting knowledge from 2D still visual multimedia content, that is, images. The knowledge is acquired through the combination of several approaches: computer vision (to get and to analyse low level features), qualitative spatial analysis (to obtain high level information from low level features), ontologies (to represent knowledge), and MPEG-7 (to describe the information in a standard-way and make the system capable of performing queries and retrieve multimedia content).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flickner, M., Shawney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B.: Query by image and video content: the QBIC system. IEEE Computer 28(9), 23–32 (1995)Google Scholar
  2. 2.
    Jain, A.K., Vailaya, K.: Image retrieval using color and shape. Pattern recognition 29, 1233–1244 (1996)CrossRefGoogle Scholar
  3. 3.
    Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: current techniques, promising directions, and open issues. Journal of Visual Communications and Image representation 10, 39–62 (1999)CrossRefGoogle Scholar
  4. 4.
    Hollink, L., Nguyen, G., Schreiber, G., Wielemaker, J., Wielinga, B., Worring, M.: Adding spatial semantics to image annotations. In: Workshop of Language and Semantic Technologies to support Knowledge Management Processes. EKAW 2004 (2004)Google Scholar
  5. 5.
    Cohn, A.G., Hazarika, S.M.: Qualitative Spatial Representation and Reasoning: An Overview. Fundamenta Informaticae 43, 2–32 (2001)MathSciNetGoogle Scholar
  6. 6.
    Galton, A.: Qualitative Spatial Change. Oxford University Press, Inc., New York (2000)Google Scholar
  7. 7.
    Srihari, R.K., Zhang, Z.: Show&Tell: A semitautomated image annotation system. IEEE Multimedia, 61–71 (July-September 2000)Google Scholar
  8. 8.
    MPEG Requirements Group. MPEG-7 Overviwe, Doc. ISO/MPEG N2727, MPEG Palma de Mallorca Meeting (October 2004)Google Scholar
  9. 9.
    Skiadopoulos, S., Koubarakis, M.: Composing Cardinal Directions Relations. Artificial Inteligence 152, 143–171 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hollink, L., Nguyen, G., Schreiber, G., Wielemaker, J., Wielinga, B., Worring, M.: Adding spatial semantics to image annotations. In: Workshop of Language and Semantic Technologies to support Knowledge Management Processes. EKAW 2004 (2004)Google Scholar
  11. 11.
    Antani, S., Lee, D.J., Rodney-Long, L., Thoma, G.R.: Evaluation of shape similarity measurement methods for spine X-ray images. Visual Communication & Image Representation 15, 285–302 (2004)CrossRefGoogle Scholar
  12. 12.
    Denman, H., Rea, N., Kokaram, A.: Content Based Analysis for Video from Snooker Broadcasts. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Assfalg, J., Bertini, M., Colombo, C., Del-Bimbo, A., Nunziati, W.: Semantic annotation of soccer videos: automatic highlights identification. Computer Vision and Image Understanding (2003)Google Scholar
  14. 14.
    Andrade, E.L., Woods, J.C., Khan, E., Ghanbari, M.: Region-based analysis and retrieval for tracking of semantic objects and provision of augmented information in interactive sport scenes. IEEE Transactions on Multimedia 7(6), 1084–1096 (2005)CrossRefGoogle Scholar
  15. 15.
    Van Heijst, G., Schreiber, A.T., Wielinga, B.J.: Using explicit ontologies in KBS development. International Journal of Human-Computer Studies 45, 183–292 (1997)Google Scholar
  16. 16.
    Gonzalez, W.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pedro José Vivancos-Vicente
    • 1
  • Jesualdo Tomás Fernández-Breis
    • 1
  • Rodrigo Martínez-Béjar
    • 1
  • Rafael Valencia-García
    • 1
  1. 1.Tecnologías del Conocimiento y Modelado Cognitivo (TECNOMOD) GroupFacultad de InformáticaMurciaSpain

Personalised recommendations