Skip to main content

Comparison of Modularization Methods in Application to Different Biological Networks

  • Conference paper
Data Mining and Bioinformatics (VDMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4316))

Included in the following conference series:

  • 523 Accesses

Abstract

Most biological networks have been proposed to possess modular organization, which increases the robustness, flexibility, and stability of networks. Many clustering methods have been used in mining biological data and partitioning complex networks into functional modules. Most of these methods require presetting the number of modules and therefore can potentially obtain biased results. The Markov clustering method (MCL) and the simulated annealing module-detection method (SA) eliminate this requirement and can objectively separate relatively dense subgraphs. In this paper, we compared these two module-detection methods for three types of biological data: protein family classification, microarray clustering, and modularity of metabolic networks. We found that these two methods show differential advantages for different biological networks. In the case of the gene network based on Affymetrix microarray spike data, MCL exactly identified the same number of groups and same contents in each group set by the spike data. In the case of the gene network derived from actual expression data, although neither of the two methods can perfectly recover the natural classification, MCL performs slightly better than SA. However, with increased random noise added to the gene expression values, SA generates better modular structures with higher modularity. Next we compared the modularization results of MCL and SA for protein family classification and found the modules detected by SA could not be well matched with the Structural Classification of Proteins (SCOP database), which suggests that MCL is ideally suited to the rapid and accurate detection of protein families. In addition, we used both methods to detect modules in the metabolic network of E. coli. MCL gives a trivial clustering, which generates biologically insignificant modules. In contrast, SA detects modules well corresponding to the KEGG functional classification. Moreover the modularity for several other metabolic networks detected by SA is also much higher than that by MCL. In summary, MCL is more suited to modularize relatively complete and definite data, such as a protein family network. In contrast, SA is less sensitive to noise such as experimental error or incomplete data and outperforms MCL when modularizing gene networks based on microarray data and large scale metabolic networks constructed from incomplete databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, 47–52 (1999)

    Article  Google Scholar 

  2. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  3. Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci., U. S. A. 100, 1128–1133 (2003)

    Article  Google Scholar 

  4. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci., U. S. A 100, 12123–12128 (2003)

    Article  Google Scholar 

  5. Wilhelm, T., Nasheuer, H.P., Huang, S.: Physical and Functional Modularity of the Protein Network in Yeast. Molecular & Cellular Proteomics 2, 292–298 (2003)

    Google Scholar 

  6. Tanay, A., Sharan, R., Kupiec, M., Shamir, R.: Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc. Natl. Acad. Sci., U. S. A 101, 2981–2986 (2004)

    Article  Google Scholar 

  7. Kitano, H.: Biological robustness. Nature Reviews Genetic 5, 826–837 (2004)

    Article  Google Scholar 

  8. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J., Doyle, J.: Robustness of Cellular Functions. Cell 118, 675–685 (2004)

    Article  Google Scholar 

  9. Holme, P., Huss, M., Jeong, H.: Subnetwork hierarchies of biochemical pathways. Bioinformatics 19, 532–538 (2003)

    Article  Google Scholar 

  10. Barabasi, A.L., Oltvai, Z.N.: Network biology: Understanding the cells’s functional organization. Nature Rev. Genetics 5, 101–113 (2004)

    Article  Google Scholar 

  11. van Dongen, S.: Graph clustering by flow simulation. PhD thesis. University of Utrecht, Center of mathematics and computer science (2000)

    Google Scholar 

  12. Kannan, R., Vampala, S., Vetta, A.: On clustering: good, bad and spectral. In: Proceedings of 41st Annual Symposium on Foundations of Computer Science, pp. 367–378 (2000)

    Google Scholar 

  13. Gaertler, M.: Clustering with spectral methods. Master’s thesis. University at Kon-stanz (2002)

    Google Scholar 

  14. Brandes, U., Gaertler, M., Wagner, D.: Experiments on graph clustering algorithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568–579. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Guimerà, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)

    Article  Google Scholar 

  16. Guimerà, R., Amaral, L.A.N.: Cartography of complex networks: modules and universal roles. J. Stat. Mech. Theor. Exp. P02001, 1–13 (2005)

    Google Scholar 

  17. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  18. Quackenbush, J.: Computational analysis of microarray data. Nature Reviews Genetics 2, 418–427 (2001)

    Article  Google Scholar 

  19. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from fluctuations in random graphs and complex networks. Physical Review E 70, 025101(R) (2004)

    Article  Google Scholar 

  20. http://www.affymetrix.com/support/technical/sample_data/datasets.affx

  21. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30, 1575–1584 (2002)

    Article  Google Scholar 

  22. Harlow, T.J., Gogarten, J.P., Ragan, M.A.: A hybrid clustering approach to recognition of protein families in 114 microbial genomes. BMC Bioinformatics 5, 45 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Zhu, XG., Chen, Y., Li, Y., Liu, L. (2006). Comparison of Modularization Methods in Application to Different Biological Networks. In: Dalkilic, M.M., Kim, S., Yang, J. (eds) Data Mining and Bioinformatics. VDMB 2006. Lecture Notes in Computer Science(), vol 4316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11960669_16

Download citation

  • DOI: https://doi.org/10.1007/11960669_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68970-6

  • Online ISBN: 978-3-540-68971-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics