Skip to main content

Intrinsic Splicing Profile of Human Genes Undergoing Simple Cassette Exon Events

  • Conference paper
Biological and Medical Data Analysis (ISBMDA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4345))

Included in the following conference series:

  • 932 Accesses

Abstract

Alternative pre-mRNA splicing presides over protein diversity and organism complexity. Alternative splicing isoforms in human have been associated with specific developmental stages, tissue-specific expressions and disease-causing factors. In this study, we identified and analysed intrinsic features that discriminate non-conserved human genes that undergo a single internal cassette exon event from constitutively spliced exons. Context-based analysis revealed a guanine-rich track at the donor of the cassette’s upstream intronic region that is absent in the constitutive dataset, as well as significant differences in the distribution of CpG and A3/G3 sequences between the alternative and the constitutive intronic regions. Interestingly, introns flanking cassette exons are larger than the constitutive ones, while exon lengths do not vary significantly. Splice sites flanking cassette exons are less identifiable, while splice sites at the outer ends are ‘stronger’ than constitutive introns. The results indicate that specific intrinsic features are linked with the inclusion/excision of internal exons which are indicative of the underlying selection rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Modrek, B., Lee, C.: A genomic view of alternative splicing. Nat. Genet. 30, 13–19 (2002)

    Article  Google Scholar 

  2. Johnson, J.M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P.M., Armour, C.D., Santos, R., Schadt, E.E., Stoughton, R., Shoemaker, D.D.: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003)

    Article  Google Scholar 

  3. Ast, G.: How did alternative splicing evolve? Nat. Rev. Genet. 5, 773–782 (2004)

    Article  Google Scholar 

  4. Faustino, N.A., Cooper, T.A.: Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003)

    Article  Google Scholar 

  5. Venables, J.P.: Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647–7654 (2004)

    Article  Google Scholar 

  6. Modrek, B., Resch, A., Grasso, C., Lee, C.: Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res. 29, 2850–2859 (2001)

    Article  Google Scholar 

  7. Graveley, B.R.: Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 17, 100–107 (2001)

    Article  Google Scholar 

  8. Stamm, S., Zhu, J., Nakai, K., Stoilov, P., Stoss, O., Zhang, M.Q.: An alternative-exon database and its statistical analysis. DNA Cell Biol. 19, 739–756 (2000)

    Article  Google Scholar 

  9. Stamm, S., Riethoven, J.J., Le Texier, V., Gopalakrishnan, C., Kumanduri, V., Tang, Y., Barbosa-Morais, N.L., Thanaraj, T.A.: ASD: a bioinformatics resource on alternative splicing. Nucleic Acids Res. 34, D46–D55 (2006)

    Article  Google Scholar 

  10. Mathe, C., Sagot, M.F., Schiex, T., Rouze, P.: Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res. 30, 4103–4117 (2002)

    Article  Google Scholar 

  11. Yeo, G., Burge, C.B.: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004)

    Article  Google Scholar 

  12. Shapiro, M.B., Senapathy, P.: RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15, 7155–7174 (1987)

    Article  Google Scholar 

  13. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  Google Scholar 

  14. Clamp, M., Cuff, J., Searle, S.M., Barton, G.J.: The Jalview Java alignment editor. Bioinformatics 20, 426–427 (2004)

    Article  Google Scholar 

  15. Foissac, S., Schiex, T.: Integrating alternative splicing detection into gene prediction. BMC. Bioinformatics 6, 25–34 (2005)

    Article  Google Scholar 

  16. Rogic, S., Mackworth, A.K., Ouellette, F.B.: Evaluation of gene-finding programs on mammalian sequences. Genome Res. 11, 817–832 (2001)

    Article  Google Scholar 

  17. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

    Article  Google Scholar 

  18. Pertea, M., Lin, X., Salzberg, S.L.: GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 29, 1185–1190 (2001)

    Article  Google Scholar 

  19. Magen, A., Ast, G.: The importance of being divisible by three in alternative splicing. Nucleic Acids Res. 33, 5574–5582 (2005)

    Article  Google Scholar 

  20. Ladd, A.N., Cooper, T.A.: Finding signals that regulate alternative splicing in the post-genomic era. Genome Biol. 3, 1–16 (2002) (reviews0008)

    Article  Google Scholar 

  21. Sorek, R., Shamir, R., Ast, G.: How prevalent is functional alternative splicing in the human genome? Trends Genet. 20, 68–71 (2004)

    Article  Google Scholar 

  22. McCullough, A.J., Berget, S.M.: G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol. Cell Biol. 17, 4562–4571 (1997)

    Google Scholar 

  23. Clark, F., Thanaraj, T.A.: Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human. Hum. Mol. Genet. 11, 451–464 (2002)

    Article  Google Scholar 

  24. Thanaraj, T.A., Stamm, S.: Prediction and statistical analysis of alternatively spliced exons. Prog. Mol. Subcell. Biol. 31, 1–31 (2003)

    Google Scholar 

  25. Itoh, H., Washio, T., Tomita, M.: Computational comparative analyses of alternative splicing regulation using full-length cDNA of various eukaryotes. RNA 10, 1005–1018 (2004)

    Article  Google Scholar 

  26. Maniatis, T., Tasic, B.: Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418, 236–243 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malousi, A., Koutkias, V., Kouidou, S., Maglaveras, N. (2006). Intrinsic Splicing Profile of Human Genes Undergoing Simple Cassette Exon Events. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds) Biological and Medical Data Analysis. ISBMDA 2006. Lecture Notes in Computer Science(), vol 4345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11946465_6

Download citation

  • DOI: https://doi.org/10.1007/11946465_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68063-5

  • Online ISBN: 978-3-540-68065-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics