Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4337))

Abstract

Given a set P of n points on the real line and a (potentially infinite) family of functions, we investigate the problem of finding a small (weighted) subset \({\mathcal{S}} \subseteq P\), such that for any \(f \in {\mathcal{F}}\), we have that f(P) is a (1±ε)-approximation to \(f({\mathcal{S}})\). Here, f(Q) = ∑  q ∈ Q w(q) f(q) denotes the weighted discrete integral of f over the point set Q, where w(q) is the weight assigned to the point q.

We study this problem, and provide tight bounds on the size \({\mathcal{S}}\) for several families of functions. As an application, we present some coreset constructions for clustering.

The latest version of this paper is avaiable online [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Har-Peled, S.: Coresets for discrete integration and clustering (2006), Available from: http://www.uiuc.edu/~sariel/papers/06/integrate

  2. Matoušek, J.: Geometric Discrepancy. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  3. Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering. In: Proc. 21st Annu. ACM Sympos. Comput. Geom., pp. 126–134 (2005)

    Google Scholar 

  4. Har-Peled, S., Mazumdar, S.: Coresets for k-means and k-median clustering and their applications. In: Proc. 36th Annu. ACM Sympos. Theory Comput., pp. 291–300 (2004)

    Google Scholar 

  5. Chen, K.: On k-median clustering in high dimensions. In: Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, pp. 1177–1185 (2006)

    Google Scholar 

  6. Agarwal, P.K., Har-Peled, S., Varadarajan, K.: Geometric approximation via coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry. Math. Sci. Research Inst. Pub., Cambridge (2005)

    Google Scholar 

  7. Feldman, D., Fiat, A., Sharir, M.: Coresets for weighted facilities and their applications (manuscript 2006)

    Google Scholar 

  8. Alon, N., Dar, S., Parnas, M., Ron, D.: Testing of clustering. In: Proc. 41st Annu. IEEE Sympos. Found. Comput. Sci., pp. 240–250 (2000)

    Google Scholar 

  9. Agarwal, P.K., Procopiuc, C.M.: Approximation algorithms for projective clustering. In: Proc. 11th ACM-SIAM Sympos. Discrete Algorithms, pp. 538–547 (2000)

    Google Scholar 

  10. Bădoiu, M., Clarkson, K.: Smaller coresets for balls. In: Proc. 14th ACM-SIAM Sympos. Discrete Algorithms, pp. 801–802 (2003)

    Google Scholar 

  11. Eppstein, D.: Fast hierarchical clustering and other applications of dynamic closest pairs. In: Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, pp. 619–628 (1998)

    Google Scholar 

  12. Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Proc. 20th Annu. ACM Sympos. Theory Comput., pp. 434–444 (1988)

    Google Scholar 

  13. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Indyk, P.: A sublinear time approximation scheme for clustering in metric spaces. In: Proc. 40th Annu. IEEE Sympos. Found. Comput. Sci., pp. 100–110 (1999)

    Google Scholar 

  15. Mishra, N., Oblinger, D., Pitt, L.: Sublinear time approximate clustering. In: Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pp. 439–447 (2001)

    Google Scholar 

  16. Ostrovsky, R., Rabani, Y.: Polynomial time approximation schemes for geometric k-clustering. In: Proc. 41st Symp. Foundations of Computer Science, pp. 349–358. IEEE, Los Alamitos (2000)

    Chapter  Google Scholar 

  17. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k-means clustering. Comput. Geom. Theory Appl. 28, 89–112 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Inaba, M., Katoh, N., Imai, H.: Applications of weighted voronoi diagrams and randomization to variance-based k-clustering. In: Proc. 10th Annu. ACM Sympos. Comput. Geom., pp. 332–339 (1994)

    Google Scholar 

  19. Har-Peled, S.: How to get close to the median shape. In: Proc. 22nd Annu. ACM Sympos. Comput. Geom. (to appear, 2006), Available from: http://www.uiuc.edu/~sariel/papers/05/l1_fitting/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Har-Peled, S. (2006). Coresets for Discrete Integration and Clustering. In: Arun-Kumar, S., Garg, N. (eds) FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2006. Lecture Notes in Computer Science, vol 4337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11944836_6

Download citation

  • DOI: https://doi.org/10.1007/11944836_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49994-7

  • Online ISBN: 978-3-540-49995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics