Skip to main content

Testing Probabilistic Equivalence Through Reinforcement Learning

  • Conference paper
Book cover FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2006)

Abstract

We propose a new approach to verification of probabilistic processes for which the model may not be available. We use a technique from Reinforcement Learning to approximate how far apart two processes are by solving a Markov Decision Process. If two processes are equivalent, the algorithm will return zero, otherwise it will provide a number and a test that witness the non equivalence. We suggest a new family of equivalences, called K-moment, for which it is possible to do so. The weakest, 1-moment equivalence, is trace-equivalence. The others are weaker than bisimulation but stronger than trace-equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. In: Proc. of the Twelfth IEEE Symposium On Logic In Computer Science, Warsaw, Poland (1997)

    Google Scholar 

  2. van Breugel, F., Shalit, S., Worrell, J.B.: Testing labelled markov processes. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 537–548. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in probabilistic transition systems. Theoretical Computer Science (2006)

    Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Chichester (1991)

    Book  MATH  Google Scholar 

  5. Desharnais, J., Laviolette, F., Darsini Moturu, K., Zhioua, S.: Trace equivalence characterization through reinforcement learning. In: 19th Canadian Conference on Artificial Intelligence (2006) (accepted for publication)

    Google Scholar 

  6. Even-Dar, E., Mansour, Y.: Learning rates for Q-learning. In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS, vol. 2111, pp. 589–604. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Fiechter, C.N.: Design and Analysis of Efficient Reinforcement Learning Algorithms. PhD thesis, Univ. of Pittsburgh (1997)

    Google Scholar 

  8. Giacalone, A., Jou, C., Smolka, S.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of the Working Conference on Programming Concepts and Methods. IFIP TC2 (1990)

    Google Scholar 

  9. Van Glabbeek, R.J.: The linear time - branching time spectrum ii. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

    Google Scholar 

  10. Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458. Springer, Heidelberg (1990)

    Google Scholar 

  11. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  12. Kearns, M., Singh, S.: Finite-sample convergence rates for q-learning and indirect algorithms. In: Proc. of the 1998 conference on Advances in neural information processing systems II, pp. 996–1002. MIT Press, Cambridge (1999)

    Google Scholar 

  13. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lowe, G.: Representing Nondeterministic and Probabilistic Behaviour in Reactive Processes. Technical report, Progr. Res. Group, Oxford University (1993)

    Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  16. Watkins, C.: Learning from Delayed Rewards. PhD thesis, Univ. of Cambridge (1989)

    Google Scholar 

  17. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Desharnais, J., Laviolette, F., Zhioua, S. (2006). Testing Probabilistic Equivalence Through Reinforcement Learning. In: Arun-Kumar, S., Garg, N. (eds) FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2006. Lecture Notes in Computer Science, vol 4337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11944836_23

Download citation

  • DOI: https://doi.org/10.1007/11944836_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49994-7

  • Online ISBN: 978-3-540-49995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics