Advertisement

Differential and Rectangle Attacks on Reduced-Round SHACAL-1

  • Jiqiang Lu
  • Jongsung Kim
  • Nathan Keller
  • Orr Dunkelman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4329)

Abstract

SHACAL-1 is an 80-round block cipher with a 160-bit block size and a key of up to 512 bits. In this paper, we mount rectangle attacks on the first 51 rounds and a series of inner 52 rounds of SHACAL-1, and also mount differential attacks on the first 49 rounds and a series of inner 55 rounds of SHACAL-1. These are the best currently known cryptanalytic results on SHACAL-1 in an one key attack scenario.

Keywords

Block cipher SHACAL-1 Differential cryptanalysis Amplified boomerang attack Rectangle attack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Biham, E., Shamir, A.: Differential cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  3. 3.
    Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Dunkelman, O., Keller, N.: Rectangle attacks on 49-round SHACAL-1. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 22–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Dunkelman, O.: Techniques for cryptanalysis of block ciphers, Ph.D dissertation of Technion (2006), Available at: http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?2006/PHD/PHD-2006-02
  7. 7.
    Dunkelman, O., Keller, N., Kim, J.-S.: Related-Key Rectangle Attack on the Full SHACAL-1. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 28–44. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Handschuh, H., Knudsen, L.R., Robshaw, M.J.: Analysis of SHA-1 in encryption mode. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Handschuh, H., Naccache, D.: SHACAL. In: Proceedings of The First Open NESSIE Workshop (2000), Available at: https://www.cosic.esat.kuleuven.be/nessie/work-shop/submissions.html
  10. 10.
    Handschuh, H., Naccache, D.: SHACAL, NESSIE (2001), Available at: https://www.cosic.esat.kuleuven.be/nessie/tweaks.html
  11. 11.
    Hong, S., Kim, J., Lee, S., Preneel, B.: Related-key rectangle attacks on reduced versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Kelsey, J., Schneier, B., Wagner, D.: Key-schedule cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The related-key rectangle attack — application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Kim, J., Moon, D., Lee, W., Hong, S., Lee, S., Jung, S.: Amplified boomerang attack against reduced-round SHACAL. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 243–253. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  18. 18.
  19. 19.
    Nakahara Jr., J.: The statistical evaluation of the NESSIE submission (2001)Google Scholar
  20. 20.
    U.S. Department of Commerce, Secure Hash Standard FIPS 180-1, N.I.S.T. (1995)Google Scholar
  21. 21.
    Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jiqiang Lu
    • 1
  • Jongsung Kim
    • 2
    • 3
  • Nathan Keller
    • 4
  • Orr Dunkelman
    • 5
  1. 1.Information Security Group, Royal HollowayUniversity of LondonEgham, SurreyUK
  2. 2.ESAT/SCD-COSICKatholieke Universiteit LeuvenLeuven-HeverleeBelgium
  3. 3.Center for Information Security Technologies(CIST)Korea UniversitySeoulKorea
  4. 4.Einstein Institute of MathematicsHebrew UniversityJerusalemIsrael
  5. 5.Computer Science DepartmentTechnionHaifaIsrael

Personalised recommendations