Advertisement

Extended Double-Base Number System with Applications to Elliptic Curve Cryptography

  • Christophe Doche
  • Laurent Imbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4329)

Abstract

We investigate the impact of larger digit sets on the length of Double-Base Number system (DBNS) expansions. We present a new representation system called extended DBNS whose expansions can be extremely sparse. When compared with double-base chains, the average length of extended DBNS expansions of integers of size in the range 200–500 bits is approximately reduced by 20% using one precomputed point, 30% using two, and 38% using four. We also discuss a new approach to approximate an integer n by d2 a 3 b where d belongs to a given digit set. This method, which requires some precomputations as well, leads to realistic DBNS implementations. Finally, a left-to-right scalar multiplication relying on extended DBNS is given. On an elliptic curve where operations are performed in Jacobian coordinates, improvements of up to 13% overall can be expected with this approach when compared to window NAF methods using the same number of precomputed points. In this context, it is therefore the fastest method known to date to compute a scalar multiplication on a generic elliptic curve.

Keywords

Double-base number system Elliptic curve cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  2. 2.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 203–209 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Koblitz, N.: Hyperelliptic cryptosystems. J. Cryptology 1, 139–150 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic curves in cryptography. London Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  5. 5.
    Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to elliptic curve cryptography. Springer, Berlin (2003)Google Scholar
  6. 6.
    Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Nguyen, K., Lange, T., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. In: Discrete Mathematics and its Applications. CRC Press, Inc., Boca Raton (2005)Google Scholar
  7. 7.
    Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography. London Mathematical Society Lecture Note Series, vol. 317. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Doche, C.: Exponentiation. In: [6], pp. 145–168Google Scholar
  9. 9.
    Morain, F., Olivos, J.: Speeding up the Computations on an Elliptic Curve using Addition-Subtraction Chains. Inform. Theor. Appl. 24, 531–543 (1990)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Theory and applications of the double-base number system. IEEE Trans. on Computers 48, 1098–1106 (1999)CrossRefGoogle Scholar
  11. 11.
    Miyaji, A., Ono, T., Cohen, H.: Efficient Elliptic Curve Exponentiation. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 282–291. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Takagi, T., Yen, S.M., Wu, B.C.: Radix-r non-adjacent form. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 99–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponentiation. Information Processing Letters 66, 155–159 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Berthé, V., Imbert, L.: On converting numbers to the double-base number system. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architecture and Implementations XIV. Proceedings of SPIE, vol. 5559, pp. 70–78 (2004)Google Scholar
  15. 15.
    Ciet, M., Sica, F.: An Analysis of Double Base Number Systems and a Sublinear Scalar Multiplication Algorithm. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 171–182. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Avanzi, R.M., Sica, F.: Scalar Multiplication on Koblitz Curves Using Double Bases. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 131–146. Springer, Heidelberg (2006); See also Cryptology ePrint Archive, Report 2006/067, http://eprint.iacr.org/ CrossRefGoogle Scholar
  17. 17.
    Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to Elliptic Curve Cryptography (2006); Full version of the present paper, see Cryptology ePrint Archive, http://eprint.iacr.org/
  19. 19.
    Doche, C.: A set of PARI/GP functions to compute DBNS expansions, http://www.ics.mq.edu.au/~doche/dbns_basis.gp
  20. 20.
    Doche, C., Lange, T.: Arithmetic of Elliptic Curves. In: [6], pp. 267–302Google Scholar
  21. 21.
    Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading inversions for multiplications in elliptic curve cryptography. Des. Codes Cryptogr. 39, 189–206 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Dimitrov, V.S., Järvinen, K.U., Jacobson Jr., M.J., Chan, W.F., Huang, Z.: FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 445–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Avanzi, R.M., et al.: Extending Scalar Multiplication using Double Bases. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 130–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christophe Doche
    • 1
  • Laurent Imbert
    • 2
  1. 1.Department of ComputingMacquarie UniversityAustralia
  2. 2.LIRMM, CNRS, Université Montpellier 2, UMR 5506, France, & ATIPS, CISaCUniversity of CalgaryCanada

Personalised recommendations