Advertisement

Efficient Shared-Key Authentication Scheme from Any Weak Pseudorandom Function

  • Ryo Nojima
  • Kazukuni Kobara
  • Hideki Imai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4329)

Abstract

One of the most widely used shared-key authentication schemes today is a challenge-response scheme. In this scheme, a function such as a message authentication code or a symmetric encryption scheme plays an important role. To ensure the security, we need to assume that these functions are included in a certain kind of functions family, e.g., a pseudorandom functions family. For example, functions such as SHA1-HMAC, DES and AES often assumed as the pseudorandom functions. But unfortunately, nobody knows that these functions are really pseudorandom functions and if not, then the security of the challenge-response scheme is not ensured any more. The common way to reduce this kind of fear is to construct the shared-key authentication scheme which can be proven secure with a weaker assumption on these functions. In this paper, we show that a blind-challenge-response shared-key authentication scheme which is a simple modified version of the original challenge-response authentication scheme can be constructed from a weaker cryptographic assumption known as weak pseudorandom functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, W., Rajagopalan, S., Venkatesan, R.: High-Speed Pseudorandom Number Generation with Small Memory. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 290–304. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Bellare, M.: New Proofs for NMAC and HMAC: Security without Collision-Resistance (2006), Available from: http://www-cse.ucsd.edu/~mihir/papers/hmac-new.html
  3. 3.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic Primitives Based on Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Damg\(\dot {a}\)rd, I., Nielsen, J.B.: Expanding Pseudorandom Functions; or: From Known-Plaintext Security to Chosen-Plaintext Security. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 449–464. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Katz, J., Shin, J.S.: Parallel and Concurrent Security of the HB and HB+ Protocols. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Maurer, U.M., Oswald, Y.A., Pietrzak, K., Sjödin, J.: Luby-Rackoff Ciphers from Weak Round Functions? In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 391–408. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Maurer, U., Sjödin, J.: From Known-Plaintext to Chosen-Ciphertext Security, Cryptology ePrint Archive, Report 2006/071 (2006)Google Scholar
  12. 12.
    Naor, M., Reingold, O.: Synthesizers and Their Application to the Parallel Construction of Pseudo-Random Functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231–262 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Naor, M., Reingold, O.: From Unpredictability to Indistinguishability: A Simple Construction of Pseudo-Random Functions from MACs. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 267–282. Springer, Heidelberg (1998), Available from: http://www.wisdom.weizmann.ac.il/~naor/PAPERS/mac_abs.html Google Scholar
  15. 15.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ryo Nojima
    • 1
  • Kazukuni Kobara
    • 2
    • 3
  • Hideki Imai
    • 2
    • 3
  1. 1.Information Security Research Center, National Institute of Information and Communications TechnologyTokyoJapan
  2. 2.Research Center for Information Security, National Institute of Advanced Industrial Science and TechnologyTokyoJapan
  3. 3.Faculty of Science and Engineering, Department of Electrical Electronics and Communication EngineeringChuo UniversityBunkyo-ku, TokyoJapan

Personalised recommendations