Skip to main content

Efficient Intrusion-Resilient Signatures Without Random Oracles

  • Conference paper
Information Security and Cryptology (Inscrypt 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4318))

Included in the following conference series:

Abstract

Intrusion-resilient signatures are key-evolving protocols that extend the concepts of forward-secure and key-insulated signatures. As in the latter schemes, time is divided into distinct periods where private keys are periodically updated while public keys remain fixed. Private keys are stored in both a user and a base; signature operations are performed by the user while the base is involved in periodic updates. Such a system remains secure after arbitrarily many compromises of both modules as long as break-ins are not simultaneous. Besides, when they simultaneously occur within some time period, past periods remain safe. In this work, we propose the first intrusion-resilient signature in the standard model (i.e. without random oracles) which provides both short signatures and at most log-squared private storage in the number of time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, M., Miner, S.K., Namprempre, C.: Forward-Secure Threshold Signature Schemes. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol.Ā 2020, pp. 441ā€“456. Springer, Heidelberg (2001)

    ChapterĀ  Google ScholarĀ 

  2. Abdalla, M., Reyzin, L.: A New Forward-Secure Digital Signature Scheme. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol.Ā 1666, pp. 116ā€“129. Springer, Heidelberg (1999)

    Google ScholarĀ 

  3. Anderson, R.: Two Remarks on Public Key Cryptology. In: ACM Conference on Computer and Communications Security (1997) (Invited lecture)

    Google ScholarĀ 

  4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol.Ā 3897, pp. 319ā€“331. Springer, Heidelberg (2006)

    ChapterĀ  Google ScholarĀ 

  5. Bellare, M., Miner, S.: A Forward-Secure Digital Signature Scheme. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol.Ā 1666, pp. 431ā€“448. Springer, Heidelberg (1999)

    Google ScholarĀ 

  6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62ā€“73. ACM Press, New York (1993)

    Google ScholarĀ 

  7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.Ā 3027, pp. 56ā€“73. Springer, Heidelberg (2004)

    ChapterĀ  Google ScholarĀ 

  8. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol.Ā 3494, pp. 440ā€“456. Springer, Heidelberg (2005)

    ChapterĀ  Google ScholarĀ 

  9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.Ā 2139, pp. 213ā€“229. Springer, Heidelberg (2001)

    ChapterĀ  Google ScholarĀ 

  10. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-Secure Signatures with Untrusted Update. In: ACM CCS 2006. ACM Press, New York (2006)

    Google ScholarĀ 

  11. Camenisch, J., Koprowski, M.: Fine-grained forward-secure signature schemes without random oracles. Discrete Applied MathematicsĀ 154(2), 175ā€“188 (2006)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. Journal of the ACMĀ 51(4), 557ā€“594 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  13. Canetti, R., Halevi, S., Katz, J.: A forward secure public key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.Ā 2656, pp. 254ā€“271. Springer, Heidelberg (2003)

    Google ScholarĀ 

  14. Chow, S.S., Kwong Hui, L.C., Yiu, S.M., Chow, K.P.: Secure Hierarchical Identity Based Signature and Its Application. In: LĆ³pez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol.Ā 3269, pp. 480ā€“494. Springer, Heidelberg (2004)

    ChapterĀ  Google ScholarĀ 

  15. Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: Intrusion-Resilient Public-Key Encryption. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol.Ā 2612, pp. 19ā€“32. Springer, Heidelberg (2003)

    ChapterĀ  Google ScholarĀ 

  16. Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: A Generic Construction for Intrusion-Resilient Public-Key Encryption. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol.Ā 2964, pp. 81ā€“98. Springer, Heidelberg (2004)

    ChapterĀ  Google ScholarĀ 

  17. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-Insulated Public Key Cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol.Ā 2332, pp. 65ā€“82. Springer, Heidelberg (2002)

    ChapterĀ  Google ScholarĀ 

  18. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol.Ā 2567, pp. 130ā€“144. Springer, Heidelberg (2002)

    ChapterĀ  Google ScholarĀ 

  19. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.Ā 2501, pp. 548ā€“566. Springer, Heidelberg (2002)

    ChapterĀ  Google ScholarĀ 

  20. Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput.Ā 17(2), 281ā€“308 (1988)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  21. Guillou, L., Quisquater, J.-J.: A ā€œparadoxicalā€ identity-based signature scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.Ā 403, pp. 216ā€“231. Springer, Heidelberg (1990)

    Google ScholarĀ 

  22. Granger, R., Smart, N.P.: On Computing Products of Pairings. Cryptology ePrint Archive: Report 2006/172 (2006)

    Google ScholarĀ 

  23. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Public Key and Signature Systems. In: 4th ACM Conference on Computer and Communication Security, pp. 100ā€“110. ACM Press, New York (1997)

    ChapterĀ  Google ScholarĀ 

  24. Hu, F., Wu, C.-H., Irwin, J.D.: A New Forward Secure Signature Scheme using Bilinear Maps. Cryptology ePrint Archive: Report 2003/188 (2003)

    Google ScholarĀ 

  25. Itkis, G., Reyzin, L.: Forward-Secure Signatures with Optimal Signing and Verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.Ā 2139, pp. 332ā€“354. Springer, Heidelberg (2001)

    ChapterĀ  Google ScholarĀ 

  26. Itkis, G., Reyzin, L.: SiBIR: Signer-Base Intrusion-Resilient Signatures. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol.Ā 2442, pp. 499ā€“514. Springer, Heidelberg (2002)

    ChapterĀ  Google ScholarĀ 

  27. Itkis, G.: Intrusion-Resilient Signatures: Generic Constructions, or Defeating Strong Adversary with Minimal Assumptions. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol.Ā 2576, pp. 102ā€“118. Springer, Heidelberg (2003)

    ChapterĀ  Google ScholarĀ 

  28. Itkis, G.: Forward Security: Adaptive Cryptography - Time Evolution. In: The Handbook of Information Security. John Wiley and Sons, Chichester (2004) (Invited)

    Google ScholarĀ 

  29. Kang, B.G., Park, J.H., Hahn, S.G.: A New Forward Secure Signature Scheme. Cryptology ePrint Archive: Report 2004/183 (2004)

    Google ScholarĀ 

  30. Katz, J.: A Forward-Secure Public-Key Encryption Scheme. Cryptology ePrint Archive: Report 2002/060 (2002)

    Google ScholarĀ 

  31. Lamport, L.: Constructing Digital Signatures from a One-Way Function. Technical Report CSL-98. Sri Internation (1979)

    Google ScholarĀ 

  32. Malkin, T., Micciancio, D., Miner, S.K.: Efficient Generic Forward-Secure Signatures with an Unbounded Number Of Time Periods. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol.Ā 2332, pp. 400ā€“417. Springer, Heidelberg (2002)

    ChapterĀ  Google ScholarĀ 

  33. Malkin, T., Obana, S., Yung, M.: The Hierarchy of Key Evolving Signatures and a Characterization of Proxy Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.Ā 3027, pp. 306ā€“322. Springer, Heidelberg (2004)

    ChapterĀ  Google ScholarĀ 

  34. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: 3rd ACM Conference on Computer and Communications Security, pp. 48ā€“57. ACM Press, New York (1996)

    ChapterĀ  Google ScholarĀ 

  35. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICETransactions on FundamentalsĀ E84-A(5), 1234ā€“1243 (2001)

    Google ScholarĀ 

  36. Ostrovsky, R., Yung, M.: How to Withstand Mobile Virus Attacks. In: 10th ACM Symp. on Principles of Distributed Computing, pp. 51ā€“59 (1991)

    Google ScholarĀ 

  37. Paterson, K.G., Schuldt, J.C.N.: Efficient Identity-based Signatures Secure in the Standard Model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol.Ā 4058, pp. 207ā€“222. Springer, Heidelberg (2006)

    ChapterĀ  Google ScholarĀ 

  38. Shamir, A.: Identity based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol.Ā 196, pp. 47ā€“53. Springer, Heidelberg (1985)

    ChapterĀ  Google ScholarĀ 

  39. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol.Ā 3494, pp. 114ā€“127. Springer, Heidelberg (2005)

    ChapterĀ  Google ScholarĀ 

  40. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol.Ā 2947, pp. 277ā€“290. Springer, Heidelberg (2004)

    ChapterĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Libert, B., Quisquater, JJ., Yung, M. (2006). Efficient Intrusion-Resilient Signatures Without Random Oracles. In: Lipmaa, H., Yung, M., Lin, D. (eds) Information Security and Cryptology. Inscrypt 2006. Lecture Notes in Computer Science, vol 4318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11937807_3

Download citation

  • DOI: https://doi.org/10.1007/11937807_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49608-3

  • Online ISBN: 978-3-540-49610-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics