Skip to main content

An Event-Based Pool Physics Simulator

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4250))

Abstract

The paper presents a method to simulate the physics of the game of pool. The method is based upon a parametrization of ball motion which allows the time of occurrence of events, such as collisions and transitions between motion states, to be solved analytically. It is shown that the occurrences of all possible events are determined as the roots of polynomials up to fourth order, for which closed-form solutions exist. The method is both accurate, returning continuous space solutions for both time and space parameters, and efficient, requiring no iterative numerical methods. It is suitable for use within a game tree search, which requires a great many potential shots to be modeled efficiently, and within a robotic pool system, which requires a high accuracy in predicting shot outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alciatore, D.: The Illustrated Principles of Pool and Billiards. Sterling Publishers, New York (2004)

    Google Scholar 

  2. Ebne Alian, M., Bagheri Shouraki, S., Manzuri Shalmani, M.T., Karimian, P., Sabzmeydani, P.: Robotshark: A Gantry Pool Player Robot. In: ISR 2004: 35th Intl. Sym. Rob. (2004)

    Google Scholar 

  3. Bayes, J., Scott, W.: Billiard Ball Collision Experiment. Am. Jour. Physics 3(31), 197–200 (1963)

    Article  Google Scholar 

  4. Berger, F.: (2000), http://foobillard.sunsite.dk

  5. Cheng, B.R., Li, J.T., Yang, J.S.: Design of the Neural-Fuzzy Compensator for a Billiard Robot. In: IEEE Intl. Conf. Networking, Sensing & Control, pp. 909–913 (2004)

    Google Scholar 

  6. Chua, S.C., Wong, E.K., Tan, A.W.C., Koo, V.C.: Decision Algorithm for Pool Using Fuzzy System. In: iCAiET 2002: Intl. Conf. AI in Eng. & Tech., pp. 370–375 (2002)

    Google Scholar 

  7. Chua, S.C., Wong, E.K., Koo, V.C.: Pool Balls Identification and Calibration for a Pool Robot. In: ROVISP 2003: Proc. Intl. Conf. Robotics, Vision, Information and Signal Processing, pp. 312–315 (2003)

    Google Scholar 

  8. Coriolis, G.G.: Théorie Mathématique des Effets du Jeu de Billard. Jacques Gabay (1835) (republished, 1990)

    Google Scholar 

  9. Koehler, J.H.: The Science of Pocket Billiards. Sportology Publications, Laguna Hills (1989)

    Google Scholar 

  10. Larsen, L.B., Jensen, M.D., Vodzi, W.K.: Multi Modal User Interaction in an Automatic Pool Trainer. In: ICMI 2002: 4th IEEE Intl. Conf. Multimodal Interfaces, pp. 361–366 (2002)

    Google Scholar 

  11. Lin, Z.M., Yang, J.S., Yang, C.Y.: Grey Decision-Making for a Billiard Robot. In: IEEE Intl. Conf. Systems, Man and Cybernetics, pp. 5350–5355 (2004)

    Google Scholar 

  12. Long, F., Herland, J., Tessier, M.-C., Naulls, D., Roth, A., Roth, G., Greenspan, M.: Robotic Pool: An Experiment in Automatic Potting. In: IROS 2004: IEEE/RSJ Intl. Conf. Intell. Rob. Sys., pp. 361–366 (2004)

    Google Scholar 

  13. Marlow, W.C.: The Physics of Pocket Billiards. Marlow Advanced Systems Technologies, Palm Beach Gardens (1995)

    Google Scholar 

  14. Onada, G.: Comment on Analysis of Billiard Ball Collisions in Two Dimensions. Am. Jour. Physics 57(5), 476–478 (1989)

    Article  Google Scholar 

  15. Petit, R.: Billard. Théorie du Jeu. Chiron Editeur, Saint-Quentin, France (1997)

    Google Scholar 

  16. Shepard, R.: Amateur Physics for the Amateur Pool Player. 3rd edn. (self-published, 1997)

    Google Scholar 

  17. Shu, S.W.: Automating Skills Using a Robot Snooker Player. PhD Thesis, Bristol University (1994)

    Google Scholar 

  18. Walker, J.: The Physics of the Draw, the Follow, and the Masse (in Billiards and Pool). Scientific American 249(1), 124–129 (1983)

    Article  Google Scholar 

  19. Wallace, R.E., Schroeder, M.: Analysis of Billiard Ball Collisions in Two Dimensions. Am. Jour. Physics 56(9), 815–819 (1988)

    Article  Google Scholar 

  20. Witters, J., Duymelinck, D.: Rolling and Sliding Resistive Forces on Balls Moving on a Flat Surface. Am. Jour. Physics 54(1), 80–83 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leckie, W., Greenspan, M. (2006). An Event-Based Pool Physics Simulator. In: van den Herik, H.J., Hsu, SC., Hsu, Ts., Donkers, H.H.L.M.(. (eds) Advances in Computer Games. ACG 2005. Lecture Notes in Computer Science, vol 4250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922155_19

Download citation

  • DOI: https://doi.org/10.1007/11922155_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48887-3

  • Online ISBN: 978-3-540-48889-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics