Skip to main content

A Mobile Low-Cost Motion Capture System Based on Accelerometers

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4292))

Abstract

Low-cost accelerometers can be employed to create a motion-capture solution for below US$ 100. It may be used in mobile settings employing a portable digital recording device to capture the analog data of 15 degrees of freedom. The solution is integrated with standard 3D animation software. We introduce methods to extract and tweak kinematical as well as timing data from these acceleration sensors, which are attached to an actor’s limbs. These methods take care of the fact that the measured acceleration data alone can neither provide complete nor accurate information to satisfactorily reconstruct the captured motion. Particular emphasis is placed on the ease of use, in particular concerning the calibration of the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Computer Vision and Image Understanding: CVIU 81, 231–268 (2001)

    Article  MATH  Google Scholar 

  2. Chai, J., Hodgins, J.K.: Performance animation from low-dimensional control signals. ACM Transactions on Graphics 24, 686–696 (2005)

    Article  Google Scholar 

  3. Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. In: SIGGRAPH 2002: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 491–500. ACM Press, New York (2002)

    Chapter  Google Scholar 

  4. Zhu, R., Zhou, Z.: A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12, 295–302 (2004)

    Article  Google Scholar 

  5. Sabatini, A.M.: Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Medical and Biological Engineering and Computing 43, 94–101 (2005)

    Article  Google Scholar 

  6. Mayagoitia, R.E., Nene, A.V., Veltink, P.H.: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. Journal of Biomechanics 35, 537–542 (2002)

    Article  Google Scholar 

  7. Luinge, H.J., Veltink, P.H.: Inclination measurement of human movement using a 3-d accelerometer with autocalibration. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12, 112–121 (2004)

    Article  Google Scholar 

  8. Hansson, G., Asterland, P., Holmer, N., Skerfving, S.: Validity and reliability of triaxial accelerometers for inclinometry in posture analysis. Medical and Biological Engineering and Computing 39, 405–413 (2001)

    Article  Google Scholar 

  9. Giansanti, D., Macellari, V., Maccioni, G., Cappozzo, A.: Is it feasible to reconstruct body segment 3-D position and orientation using accelerometric data? IEEE Transactions on Biomedical Engineering 50, 476–483 (2003)

    Article  Google Scholar 

  10. Rehbinder, H., Hu, X.: Drift-free attitude estimation for accelerated rigid bodies. Automatica 40, 653–659 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Welch, G.F.: Hybrid self-tracker: An inertial/optical hybrid three-dimensional tracking system (1995)

    Google Scholar 

  12. Terra, S.C.L., Metoyer, R.A.: Performance timing for keyframe animation. In: SCA 2004: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 253–258. ACM Press, New York (2004)

    Chapter  Google Scholar 

  13. Thorne, M., Burke, D., van de Panne, M.: Motion doodles: an interface for sketching character motion. ACM Transactions on Graphics 23, 424–431 (2004)

    Article  Google Scholar 

  14. Luinge, H.J., Veltink, P.H.: Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Medical and Biological Engineering and Computing 43, 273–282 (2005)

    Article  Google Scholar 

  15. Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH 1995: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 97–104. ACM Press, New York (1995)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tiesel, JP., Loviscach, J. (2006). A Mobile Low-Cost Motion Capture System Based on Accelerometers. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919629_45

Download citation

  • DOI: https://doi.org/10.1007/11919629_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48626-8

  • Online ISBN: 978-3-540-48627-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics