Skip to main content

Combinatorial Pyramids and Discrete Geometry for Energy-Minimizing Segmentation

  • Conference paper
  • 1931 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4292))

Abstract

This paper defines the basis of a new hierarchical segmentation framework based on an energy minimization scheme. This new framework is based on two formal tools. First, a combinatorial pyramid encodes efficiently a hierarchy of partitions. Secondly, discrete geometric estimators measure precisely some important geometric parameters of the regions. These measures combined with photometrical and topological features of the partition allow to design energy terms based on discrete measures. Our segmentation framework exploits these energies to build a pyramid of image partitions with a minimization scheme. Some experiments illustrating our framework are shown and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, T.F.: Active contours without edges. IEEE Transactions on image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  2. Leclerc, Y.G.: Constructing simple stable descriptions for image partitioning. International Journal of Computer Vision 3(1), 73–102 (1989)

    Article  Google Scholar 

  3. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on PAMI 26(19), 1124–1137 (2004)

    Google Scholar 

  4. Koepfler, G., Lopez, C., Morel, J.M.: A multiscale algorithm for image segmentation by variational method. SIAM J. Numerical Analysis 31(1), 282–299 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Morel, J.M., Solimini, S.: Variational methods in image segmentation. In: Progress in Nonlinear Differentiel Equations and Their Applications, vol. 14. Birkhäuser, Boston (1995)

    Google Scholar 

  6. Reddings, N.J., Crisp, D.J., Tang, D.H., Newsam, G.N.: An efficient algorithm for mumford-shah segmentation and its application to sar imagery. In: Proc. Conf. Digital Image Computing Techniques and applications (DICTA), pp. 35–41 (1999)

    Google Scholar 

  7. Guigues, L., Cocquerez, J., Le Men, H.: Scale-sets image analysis. International Journal of Computer Vision 68(1), 289–317 (2006)

    Article  Google Scholar 

  8. Jolion, J.M.: Data driven decimation of graphs. In: Jolion, J.M., Kropatsch, W., Vento, M. (eds.) Proceedings of 3rd IAPR-TC15 Workshop on Graph based Representation in Pattern Recognition, Ischia-Italy, pp. 105–114 (2001)

    Google Scholar 

  9. Kropatsch, W.G., Haxhimusa, Y., Lienhardt, P.: Hierarchies relating topology and geometry. In: Christensen, H., Nagel, H.H. (eds.) Proceedings of Cognitive Vision Systems (Seminar Nº 03441 Dagstuhl) (2003)

    Google Scholar 

  10. Brun, L., Kropatsch, W.: Contains and inside relationships within combinatorial pyramids. Pattern Recognition 39(4), 515–526 (2006)

    Article  MATH  Google Scholar 

  11. Lienhardt, P.: Topological models for boundary representations: a comparison with n-dimensional generalized maps. Computer-Aided Design 23(1), 59–82 (1991)

    Article  MATH  Google Scholar 

  12. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  13. Debled-Renesson, I., Réveillès, J.P.: A linear algorithm for segmentation of discrete curves. International Journal of Pattern Recognition and Artificial Intelligence 9, 635–662 (1995)

    Article  Google Scholar 

  14. Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: Application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Analysis and comparative evaluation of discrete tangent estimators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 240–251. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. on Pattern Anal. and Machine Intell. 26(2), 252–257 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Calignon, M.B., Brun, L., Lachaud, JO. (2006). Combinatorial Pyramids and Discrete Geometry for Energy-Minimizing Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919629_32

Download citation

  • DOI: https://doi.org/10.1007/11919629_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48626-8

  • Online ISBN: 978-3-540-48627-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics