Skip to main content

Computing Homology for Surfaces with Generalized Maps: Application to 3D Images

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4292))

Abstract

In this paper, we present an algorithm which allows to compute efficiently generators of the first homology group of a closed surface, orientable or not. Starting with an initial subdivision of a surface, we simplify it to its minimal form (minimal refers to the number of cells), while preserving its homology. Homology generators can thus be directly deduced from the minimal representation of the initial surface. Finally, we show how this algorithm can be used in a 3D labelled image in order to compute homology of each region described by its boundary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Computer Aided Design 23 (1991)

    Google Scholar 

  2. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal of Computational Geometry and Applications 4, 275–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kaczynski, T., Mrozek, M., Slusarek, M.: Homology computation by reduction of chain complexes. Computers & Math. Appl. 34, 59–70 (1998)

    Article  MathSciNet  Google Scholar 

  4. Damiand, G., Lienhardt, P.: Removal and contraction for n-dimensional generalized maps. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 408–419. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002), Available on: http://www.math.cornell.edu/~hatcher/AT/ATpage.html

    MATH  Google Scholar 

  6. Tarjan, R.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 215–225 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Braquelaire, J.P., Desbarats, P., Domenger, J.P., Wüthrich, C.: A topological structuring for aggregates of 3d discrete objects. In: Workshop on Graph-Based Representations in Pattern Recognition, IAPR-TC15, Austria, pp. 193–202 (1999)

    Google Scholar 

  8. Bertrand, Y., Damiand, G., Fiorio, C.: Topological map: Minimal encoding of 3d segmented images. In: Workshop on Graph-Based Representations in Pattern Recognition, IAPR-TC15, Ischia, Italy, pp. 64–73 (2001)

    Google Scholar 

  9. Domenger, J.: Conception et implémentation du noyeau graphique d’un environnement 2D1/2 d’édition d’images discrètes. Thèse de doctorat, Université Bordeaux I (1992)

    Google Scholar 

  10. Fiorio, C.: A topologically consistent representation for image analysis: the frontiers topological graph. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 151–162. Springer, Heidelberg (1996)

    Google Scholar 

  11. Braquelaire, J.P., Brun, L.: Image segmentation with topological maps and inter-pixel representation. Journal of Visual Communication and Image Representation 9, 62–79 (1998)

    Article  Google Scholar 

  12. Dami, G., Resch, P.: Topological map based algorithms for 3D image segmentation. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 220–231. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Bourdon, P., Alata, O., Damiand, G., Olivier, C., Bertrand, Y.: Geometrical and topological informations for image segmentation with monte carlo markov chain implementation. In: Vision Interface, Calgary, Canada, pp. 413–420 (2002)

    Google Scholar 

  14. Bertrand, Y., Damiand, G., Fiorio, C.: Topological encoding of 3D segmented images. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 311–324. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damiand, G., Peltier, S., Fuchs, L. (2006). Computing Homology for Surfaces with Generalized Maps: Application to 3D Images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919629_25

Download citation

  • DOI: https://doi.org/10.1007/11919629_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48626-8

  • Online ISBN: 978-3-540-48627-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics