Skip to main content

Learning the Stylistic Similarity Between Human Motions

  • Conference paper
Book cover Advances in Visual Computing (ISVC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4291))

Included in the following conference series:

Abstract

This paper presents a computational model of stylistic similarity between human motions that is statistically derived from a comprehensive collection of captured, stylistically similar motion pairs. In this model, a set of hypersurfaces learned by single-class SVM and kernel PCA characterize the region occupied by stylistically similar motion pairs in the space of all possible pairs. The proposed model is further applied to a system for adapting an existing clip of human motion to a new environment, where stylistic distortion is avoided by enforcing stylistic similarity of the synthesized motion to the existing motion. The effectiveness of the system has been verified by 18 distinct adaptations, which produced walking, jumping, and running motions that exhibit the intended styles as well as the intended contact configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Witkin, A., Kass, M.: Spacetime constraints. In: SIGGRAPH, pp. 159–168 (1988)

    Google Scholar 

  2. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13, 1443–1471 (2001)

    Article  MATH  Google Scholar 

  3. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  4. Liu, C.K., Popović, Z.: Synthesis of complex dynamic character motion from simple animations. In: SIGGRAPH, pp. 408–416 (2002)

    Google Scholar 

  5. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Trans. Graph. 23, 522–531 (2004)

    Article  Google Scholar 

  6. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. ACM Transactions on Graphics (TOG) 22, 402–408 (2003)

    Article  MATH  Google Scholar 

  7. Ben-Arie, J., Wang, Z., Pandit, P., Rajaram, S.: Human activity recognition using multidimensional indexing. IEEE Trans. Pat. Anal. Mach. Intel. 24, 1091–1104 (2002)

    Article  Google Scholar 

  8. Rao, C., Yilmaz, A., Shah, M.: View-invariant representation and recognition of actions. International Journal of Computer Vision 50, 203–226 (2002)

    Article  MATH  Google Scholar 

  9. Gleicher, M.: Motion editing with spacetime constraints. In: Proceedings of the 1997 symposium on Interactive 3D graphics, p. 139 (1997)

    Google Scholar 

  10. Gleicher, M.: Retargetting motion to new characters. In: SIGGRAPH, pp. 33–42 (1998)

    Google Scholar 

  11. Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: SIGGRAPH, pp. 39–48 (1999)

    Google Scholar 

  12. Popović, Z., Witkin, A.: Physically based motion transformation. In: SIGGRAPH (1999)

    Google Scholar 

  13. Sulejmanpašić, A., Popović, J.: Adaptation of performed ballistic motion. ACM Trans. Graph. 24, 165–179 (2005)

    Article  Google Scholar 

  14. Tak, S., Ko, H.S.: A physically-based motion retargeting filter. ACM Trans. Graph. 24 (2005)

    Google Scholar 

  15. Pollard, N.S., Behmaram-Mosavat, F.: Force-based motion editing for locomotion tasks. In: Proceedings of the IEEE International Conference on Robotics and Automation (2000)

    Google Scholar 

  16. Pollard, N.S.: Simple machines for scaling human motion. In: Computer Animation and Simulation 1999 (1999)

    Google Scholar 

  17. Liu, C.K., Hertzmann, A., Popović, Z.: Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24, 1071–1081 (2005)

    Article  Google Scholar 

  18. Fod, A., Matarić, M.J., Jenkins, O.C.: Automated derivation of primitives for movement classification. Autonomous Robots 12, 39–54 (2002)

    Article  MATH  Google Scholar 

  19. Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. ACM Transactions on Graphics (TOG) 22, 417–426 (2003)

    Article  Google Scholar 

  20. de Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomechanics 29, 1223–1230 (1996)

    Article  Google Scholar 

  21. Schittkowski, K.: Solving constrained nonlinear least squares problems by a general purpose SQP-method. In: Hoffmann, K.H., et al. (eds.) Trends in Math. Optim., pp. 295–309 (1988)

    Google Scholar 

  22. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. Technical Report NA–97–2, Dept. Mathematics, UCSD (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chien, YR., Liu, JS. (2006). Learning the Stylistic Similarity Between Human Motions. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919476_18

Download citation

  • DOI: https://doi.org/10.1007/11919476_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48628-2

  • Online ISBN: 978-3-540-48631-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics