Skip to main content

Constructing Camin-Sokal Phylogenies Via Answer Set Programming

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2006)

Abstract

Constructing parsimonious phylogenetic trees from species data is a central problem in phylogenetics, and has diverse applications, even outside biology. Many variations of the problem, including the cladistic Camin-Sokal (CCS) version, are NP-complete. We present Answer Set Programming (ASP) models for the binary CCS problem, as well as a simpler perfect phylogeny version, along with experimental results of applying the models to biological data. Our contribution is three-fold. First, we solve phylogeny problems which have not previously been tackled by ASP. Second, we report on variants of our CCS model which significantly affect run time, including the interesting case of making the program “slightly tighter”. This version exhibits some of the best performance, in contrast with a tight version of the model which exhibited poor performance. Third, we are able to find proven-optimal solutions for larger instances of the CCS problem than the widely used branch-and-bound-based PHYLIP package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roderic, D., Page, M., Holmes, E.: Molecular Evolution: A Phylogenetic Approach. Blackwell Science, Oxford, UK (1998)

    Google Scholar 

  2. Gusfield, D.: Haplotyping as perfect phylogeny: conceptual framework and efficient solutions. In: RECOMB 2002: Proc. of the sixth annual int’l conf. on Comp. biology, pp. 166–175 (2002)

    Google Scholar 

  3. Erdem, E., Lifschitz, V., Nakhleh, L., Ringe, D.: Reconstructing the evolutionary history of indo-european languages using answer set programming. In: Proc., Practical Aspects of Declarative Languages: 5th Int’l Symposium, pp. 160–176 (2003)

    Google Scholar 

  4. Hendy, M., Penny, D.: Branch and bound algorithms to determine minimal evolutionary trees. Mathematical Biosciences 59, 277–290 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Felsenstein, J.: Phylip home page (1980), http://evolution.genetics.washington.edu/phylip

  6. Swofford, D.: Paup* 4.0 Phylogenetic Analysis Using Parsimony (*and Other Methods) (2001)

    Google Scholar 

  7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc., Int’l Logic Programming Conference and Symposium, pp. 1070–1080 (1988)

    Google Scholar 

  8. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Marek, V., Truszczynski, M.: Stable logic programming - an alternative logic programming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming Paradigm: A 25-Year Perspective. Springer, Heidelberg (1999)

    Google Scholar 

  10. Niemelä, I., Simons, P., Syrjänen, T.: Smodels: A system for answer set programming. In: Proc. 8th Int’l Workshop on Non-Monotonic Reasoning, Breckenridge, Colorado, April 9-11 (2000)

    Google Scholar 

  11. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based answer set solver enhanced to non-tight programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 346–350. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Eck, R., Dayhoff, M.: Atlas of protein sequence and structure. National Biomedical Research Foundation (1966)

    Google Scholar 

  13. Camin, J., Sokal, R.: A method for deducing branching sequences in phylogeny. Evolution 19, 311–326 (1965)

    Article  Google Scholar 

  14. Edwards-Ingram, L., Gent, M., Hoyle, D., Hayes, A., Stateva, L., Oliver, S.: Comparative genomic hybridization provides new insights into the molecular taxonomy of the saccharomyces sensu stricto complex. Genome Research 14, 1043–1051 (2004)

    Article  Google Scholar 

  15. Nozaki, H., Ohta, N., Matsuzaki, M., Misumi, O., Kuroiwa, T.: Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. J. Molecular Evolution 57, 377–382 (2003)

    Article  Google Scholar 

  16. Pacak, A., Fiedorow, P., Dabert, J., Szweykowska-Kulińska, Z.: RAPD technique for taxonomic studies of pellia epiphylla-complex (hepaticae, metzgeriales). Genetica 104, 179–187 (1998)

    Article  Google Scholar 

  17. Day, W., Johnson, D., Sankoff, D.: The computational complexity of inferring rooted phylogenies by parsimony. Mathematical Biosciences 81, 33–42 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Agarwala, R., Fernandez-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal on Computing, 1216–1224 (1994)

    Google Scholar 

  19. Hellman, M., Tripathi, N., Henz, S., Lindholm, A., Weigel, D., Breden, F., Dreyer, C.: Unpublished data (2006)

    Google Scholar 

  20. Brooks, D.R., Erdem, E., Minett, J.W., Ringe, D.: Character-based cladistics and answer set programming. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 37–51. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Purdom Jr., W., Bradford, P., Tamura, K., Kumar, S.: Single column discrepancy and dynamic max-mini optimization for quickly finding the most parsimonious evolutionary trees. Bioinformatics 2, 140–151 (2000)

    Article  Google Scholar 

  22. Yan, M., Bader, D.A.: Fast character optimization in parsimony phylogeny reconstruction. Technical report (2003)

    Google Scholar 

  23. Moret, B., Tang, J., Wang, L., Warnow, T.: Steps toward accurate reconstruction of phylogenies from gene-order data. J. Comput. Syst. Sci. 65, 508–525 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Programming 3, 499–518 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Syrjänen, T.: Lparse user’s manual (1998), http://www.tcs.hut.fi/Software/smodels/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kavanagh, J., Mitchell, D., Ternovska, E., Maňuch, J., Zhao, X., Gupta, A. (2006). Constructing Camin-Sokal Phylogenies Via Answer Set Programming. In: Hermann, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2006. Lecture Notes in Computer Science(), vol 4246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11916277_31

Download citation

  • DOI: https://doi.org/10.1007/11916277_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48281-9

  • Online ISBN: 978-3-540-48282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics