Advertisement

Timed Release Cryptography from Bilinear Pairings Using Hash Chains

  • Konstantinos Chalkias
  • George Stephanides
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4237)

Abstract

We propose a new Timed Release Cryptography (TRC) scheme which is based on bilinear pairings together with an S/Key-like procedure used for private key generation. Existing schemes for this task, such as time-lock puzzle approach, provide an approximate release time, dependent on the recipients’ CPU speed and the beginning time of the decryption process. Additionally, some other server-based schemes do not provide scalability and anonymity because the server is actively involved in the encryption or the decryption. However, there are already protocols based on bilinear pairings that solve most of the problems referred. Our goal is to extend and combine the existing protocols with desirable properties in order to create a secure, fast and scalable TRC scheme applied to dependent or sequential events. For this purpose we used continuous hashed time-instant private keys (hash chain) in the same way the S/Key system works. Our approach decreases dramatically the number of past time-instant private keys the server stores and only two keys are needed, the last one to construct the previous keys and the first one to recursively verify the authenticity of the next keys.

Keywords

Timed-Release Cryptography bilinear pairings S/Key hash chains sealed-bid auctions 

References

  1. 1.
    Bellare, M., Goldwaaser, S.: Encapsulated key escrow. MIT LCS Tech. Report MIT/LCS/TR-688 (April 1996)Google Scholar
  2. 2.
    Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 531. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Blake, I.F., Chan, A.C.-F.: Scalable, server-passive, user-anonymous timed release public key encryption from bilinear pairing (2004), http://eprint.iacr.org/2004/211/
  4. 4.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 514. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Brandt, F.: Fully private auctions in a constant number of rounds. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 223–238. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Cha, J., Cheon, J.: An id-based signature from gap-diffie-hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of multiple trust authorities in pairing based cryptosystems. In: Davida, G.I., Frankel, Y., Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 74–89. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Franklin, M.K., Reiter, M.K.: The design and implementation of a secure auction service. In: Proceedings of 1995 IEEE Symposium on Security and Privacy, Oakland, California, pp. 2–14 (1995)Google Scholar
  12. 12.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Garay, J., Jakobsson, M.: Timed release of standard digital signatures. In: CRYPTO (2002)Google Scholar
  14. 14.
    Garay, J., Pomerance, C.: Timed fair exchange of arbitrary signatures. In: CRYPTO 2003 (2003)Google Scholar
  15. 15.
    Garay, J.A., Pomerance, C.: Timed fair exchange of standard signatures. In: Financial Cryptography (2002)Google Scholar
  16. 16.
    Haller, N.: The S/KEY One-Time Password System (2005), http://www.rfc-archive.org/getrfc.php?rfc=1760
  17. 17.
    Harkavy, J.T., Kikuchi, H.: On cheating in sealed-bid auctions. In: EC 2003 (2003)Google Scholar
  18. 18.
    Harkavy, J.T.M., Kikuchi, H.: Electronic auctions with private bids. In: 3rd USENIX Workshop on Electronic Commerce, Boston, Mass, pp. 61–73 (1998)Google Scholar
  19. 19.
    Joux, A., Nguyen, K.: Separating decision diffie-hellman from diffie-hellman in cryptographic groups (2001), Available from: http://eprint.iacr.org/2001/003/
  20. 20.
    Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 446–465. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Mao, W.: Timed-release cryptography. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 342–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Mont, K.H.M.C., Sadler, M.: The hp time vault service: Exploiting IBE for timed release of confidential information. In: WWW 2003 (2003)Google Scholar
  23. 23.
    May, T.: Timed-release crypto. Manuscript (February 1993), http://www.hks.net.cpunks/cpunks/-1560.html Google Scholar
  24. 24.
    Mercle, R.C.: Secure communications over insecure channels. Communications of ACM 21(4), 294–299 (1978)CrossRefzbMATHGoogle Scholar
  25. 25.
    Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory IT-39(5), 1639–1646 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: Proceedings of ACM Conference on Electronic Commerce, pp. 129–139 (1999)Google Scholar
  27. 27.
    van Oorschot, P., Wiener, M.: A Known Plaintext Attack on Two-Key Triple Encryption. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 366–377. Springer, New York (1991)Google Scholar
  28. 28.
    Osipkov, I., Kim, Y., Cheon, J.H.: A Scheme for Timed-Release Public Key Based Authenticated Encryption (2004), Available from: http://citeseer.ifi.unizh.ch/709184.html
  29. 29.
    Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and time-released crypto. In: MIT laboratory for Computer Science,MIT/LCS/TR-684 (1996)Google Scholar
  30. 30.
    Shamus Software Ltd. Miracl: Multiprecision integer and rational arithmetic c/c++ library. Available from: http://indigo.ie/mscott/
  31. 31.
    Stögbauer, M.: Efficient Algorithms for Pairing-Based Cryptosystems. Diploma Thesis: Darmstadt University of Technology, Dept. of Mathematics (January 2004)Google Scholar
  32. 32.
    Syverson, P.F.: Weakly secret bit commitment: Applications to lotteries and fair exchange. In: 1998 IEEE Computer Security Foundations Workshop (CSFW11) (1998)Google Scholar
  33. 33.
    Yuval, G.: How to Swindle Rabin. Cryptologia 3, 187–189 (1979)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Konstantinos Chalkias
    • 1
  • George Stephanides
    • 1
  1. 1.Department of Applied InformaticsUniversity of MacedoniaThessalonikiGreece

Personalised recommendations