WordNet-Based Word Sense Disambiguation for Learning User Profiles

  • M. Degemmis
  • P. Lops
  • G. Semeraro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4289)


Nowadays, the amount of available information, especially on the Web and in Digital Libraries, is increasing over time. In this context, the role of user modeling and personalized information access is increasing. This paper focuses on the problem of choosing a representation of documents that can be suitable to induce concept-based user profiles as well as to support a content-based retrieval process. We propose a framework for content-based retrieval, which integrates a word sense disambiguation algorithm based on a semantic similarity measure between concepts (synsets) in the WordNet IS-A hierarchy, with a relevance feedback method to induce semantic user profiles. The document representation adopted in the framework, that we called Bag-Of-Synsets (BOS) extends and slightly improves the classic Bag-Of-Words (BOW) approach, as shown by an extensive experimental session.


Word Sense Disambiguation Document Representation Semantic Similarity Measure Query Vector Prototype Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asnicar, F., Tasso, C.: ifweb: a prototype of user model-based intelligent agent for documentation filtering and navigation in the word wide web. In: Proc. of 1st Int. Workshop on adaptive systems and user modeling on the WWW (1997)Google Scholar
  2. 2.
    Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  3. 3.
    Bloedhorn, S., Hotho, A.: Boosting for text classification with semantic features. In: Proc. of 10th ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining, Mining for and from the Semantic Web Workshop, pp. 70–87 (2004)Google Scholar
  4. 4.
    Ceci, M., Malerba, D.: Hierarchical classification of HTML documents with WebClassII. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 57–72. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Debole, F., Sebastiani, F.: Supervised term weighting for automated text categorization. In: Proceedings of SAC 2003, 18th ACM Symposium on Applied Computing, Melbourne, US, pp. 784–788. ACM Press, New York (2003)CrossRefGoogle Scholar
  6. 6.
    Dumais, S.T., Furnas, G.W., Landauer, T.K., Deerwester, S., Harshman, R.: Using latent semantic analysis to improve access to textual information. In: Proceedings of the Conference on Human Factors in Computing Systems CHI 1988 (1988)Google Scholar
  7. 7.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  8. 8.
    Hotho, A., Staab, S., Stumme., G.: Wordnet improves text document clustering. In: Proc. of the SIGIR Semantic Web Workshop (2003)Google Scholar
  9. 9.
    Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification, Fellbaum, C. (ed.), pp. 305–332. MIT Press, Cambridge (1998)Google Scholar
  10. 10.
    Magnini, B., Strapparava, C.: Improving user modelling with content-based techniques. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds.) UM 2001. LNCS, vol. 2109, pp. 74–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. The MIT Press, Cambridge (1984)Google Scholar
  12. 12.
    Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M., Theobald, M., Weikum, G.: Word sense disambiguation for exploiting hierarchical thesauri in text classification. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 181–192. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Mladenic, D.: Text-learning and related intelligent agents: a survey. IEEE Intelligent Systems 14(4), 44–54 (1999)CrossRefGoogle Scholar
  14. 14.
    Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness for word sense disambiguation. In: Proc. of the Fourth Intern. Conf. on Intelligent Text Processing and Computational Linguistics, p. 241 (2003)Google Scholar
  15. 15.
    Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27(3), 313–331 (1997)CrossRefGoogle Scholar
  16. 16.
    Resnik, P.: WordNet and class-based probabilities, Fellbaum, C. (ed.), pp. 305–332. MIT Press, Cambridge (1998)Google Scholar
  17. 17.
    Rocchio, J.: Relevance feedback information retrieval. In: Salton, G. (ed.) The SMART retrieval system - experiments in automated document processing, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  18. 18.
    Rodriguez, M.d.B., Gomez-Hidalgo, J.M., Diaz-Agudo, B.: Using wordnet to complement training information in text categorization. In: 2nd Int. Conf. on Recent Advances in NLP, pp. 150–157 (1997)Google Scholar
  19. 19.
    Scott, S., Matwin, S.: Text classification using wordnet hypernyms. In: COLING-ACL Workshop on usage of WordNet for in NLP Systems, pp. 45–51 (1998)Google Scholar
  20. 20.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1) (2002)Google Scholar
  21. 21.
    Theobald, M., Schenkel, R., Weikum, G.: Exploting structure, annotation, and ontological knowledge for automatic classification of xml data. In: Proceedings of International Workshop on Web and Databases, pp. 1–6 (2004)Google Scholar
  22. 22.
    Yao, Y.Y.: Measuring retrieval effectiveness based on user preference of documents. Journal of the American Society for Information Science 46(2), 133–145 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Degemmis
    • 1
  • P. Lops
    • 1
  • G. Semeraro
    • 1
  1. 1.Dipartimento di InformaticaUniversità di BariBariItalia

Personalised recommendations