Ontology-Based Rummaging Mechanisms for the Interpretation of Web Usage Patterns

  • Mariângela Vanzin
  • Karin Becker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4289)


Web Usage Mining (WUM) is the application of data mining techniques over web server logs in order to extract navigation usage patterns. Identifying the relevant and interesting patterns, and to understand what knowledge they represent in the domain is the goal of the Pattern Analysis phase, one of the phases of the WUM process. Pattern analysis is a critical phase in WUM due to two main reasons: a) mining algorithms yield a huge number of patterns; b) there is a significant semantic gap between URLs and events performed by users. In this paper, we discuss an ontology-based approach to support the analysis of sequential navigation patterns, discussing the main features of the O3R (Ontology-based Rules Retrieval and Rummaging) prototype. O3R functionality is targeted at supporting the comprehension of patterns through interactive pattern rummaging, as well as on the identification of potentially interesting ones. All functionality is based on the availability of the domain ontology, which dynamically provides meaning to URLs. The paper provides an overall view of O3R, details the rummaging functionality, and discusses preliminary results on the use of O3R.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Knowledge and Information Systems 1(1), 5–32 (1999)Google Scholar
  2. 2.
    Cooley, R.: The use of web structure and content to identify subjectively interesting web usage patterns. ACM Transactions on Internet Technology 3(2), 93–116 (2003)CrossRefGoogle Scholar
  3. 3.
    Berendt, B., Hotho, A., Stumme, G.: Towards Semantic Web Mining. In: International Semantic Web Conference, pp. 264–278 (2002)Google Scholar
  4. 4.
    Berendt, B., Spiliopoulou, M.: Analysing navigation behaviour in web sites integrating multiple information systems. The VLDB Journal 9, 56–75 (2000)CrossRefGoogle Scholar
  5. 5.
    Meo, R., Lanzi, P.L., Matera, M.: Integrating Web Conceptual Modeling and Web Usage Mining. In: WebKDD 2004 (International Workshop on Web Mining and Web Usage Analysis). ACM Press, New York (2004)Google Scholar
  6. 6.
    Oberle, D., Berendt, B., Hotho, A., Gonzalez, J.: Conceptual user tracking. In: International Atlantic Web Intelligence Conference, pp. 142–154. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Dai, H., Mobasher, B.: Using ontologies to discovery domain-level web usage profiles. In: 2nd Semantic Web Mining Workshop at ECML/PKDD 2002. ACM Press, New York (2002)Google Scholar
  8. 8.
    Silberschatz, A., Tuzhilin, A.: What makes patterns interesting in knowledge discovery systems. IEEE Transactions on Knowledge and Data Engineering 8(6), 970–974 (1996)CrossRefGoogle Scholar
  9. 9.
    Vanzin, M., Becker, K.: Exploiting knowledge representation for pattern interpretation. In: Workshop on Knowledge Discovery and Ontologies – KDO 2004, pp. 61–71 (2004)Google Scholar
  10. 10.
    Vanzin, M., Becker, K.: Ontology-based filtering mechanisms for web usage patterns retrieval. In: Bauknecht, K., Pröll, B., Werthner, H. (eds.) EC-Web 2005. LNCS, vol. 3590, pp. 267–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.I.: Finding interesting rules from large sets of discovered association rules. In: Proceedings of the third international conference on Information and knowledge management, pp. 401–407. ACM Press, New York (1994)CrossRefGoogle Scholar
  12. 12.
    Hipp, J., Guntzer, U.: Is pushing constraints deeply into the mining algorithms really what we want?: an alternative approach for association rule mining. SIGKDD Exploration. Newsl. 4(1), 50–55 (2002)CrossRefGoogle Scholar
  13. 13.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: 11th International Conference on Data Engineering, pp. 3–14. ACM Press, New York (1995)Google Scholar
  14. 14.
    Sure, Y., Angele, J., Staab, S.: Ontoedit: guiding ontology development by methodology and inferencing. In: International Conference on Ontologies, Databases and Applications of Semantics (ODBASE), pp. 1205–1222 (2002)Google Scholar
  15. 15.
    Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain structure to compute similarity. ACM Transactions on Information Systems 21(1), 64–93 (2003)CrossRefGoogle Scholar
  16. 16.
    Mobasher, B.: Web Usage Mining and Personalization. In: Practical Handbook of Internet Computing. CRC Press, Boca Raton (2005)Google Scholar
  17. 17.
    Nichele, C., Becker, K.: Clustering Web Sessions by Levels of Page Similarity. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS, vol. 3918, pp. 346–350. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Machado, L., Becker, K.: Distance education: A web usage mining case study for the evaluation of learning sites. In: 3rd IEEE International Conference on Advantage Learning Technologies – ICALT (2003), pp. 360–361. ACM Press, New York (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mariângela Vanzin
    • 1
  • Karin Becker
    • 1
  1. 1.Pontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations