Skip to main content

Gene Regulation in the Pi Calculus: Simulating Cooperativity at the Lambda Switch

  • Conference paper
Transactions on Computational Systems Biology VII

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 4230))

Abstract

We propose to model the dynamics of gene regulatory networks as concurrent processes in the stochastic pi calculus. As a first case study, we show how to express the control of transcription initiation at the lambda switch, a prototypical example where cooperative enhancement is crucial. This requires concurrent programming techniques that are new to systems biology, and necessitates stochastic parameters that we derive from the literature. We test all components of our model by exhaustive stochastic simulations. A comparison with previous results reported in the literature, experimental and simulation based, confirms the appropriateness of our modeling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackers, G.K., Johnson, A.D., Shea, M.A.: Quantitative model for gene regulation by λ phage repressor. Proceedings of the National Academy of Sciences USA 79(4), 1129–1133 (1982)

    Article  Google Scholar 

  2. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)

    Google Scholar 

  3. Aurell, E., Brown, S., Johanson, J., Sneppen, K.: Stability puzzles in phage λ. Physical Review E 65, 51914 (2002)

    Article  Google Scholar 

  4. Baek, K., Svenningsen, S., Eisen, H., Sneppen, K., Brown, S.: Single-cell analysis of λ immunity regulation. Journal of Molecular Biology 334(3), 363–372 (2003)

    Article  Google Scholar 

  5. Bakk, A.: Transcriptional activation mechanisms of the P RM promoter of λ phage. Biophysical Chemistry 114(2–3), 229–234 (2005)

    Article  Google Scholar 

  6. Berg, O.G., Winter, R.B., von Hippel, P.H.: Diffusion-driven mechanisms of protein translocation on nucleic acids: 1 - models and theory. Biochemistry 20, 6929–6948 (1981)

    Article  Google Scholar 

  7. Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001)

    Google Scholar 

  8. Bundschuh, R., Hayot, F., Jayaprakash, C.: The role of dimerization in noise reduction of simple genetic networks. Journal of Theoretical Biology 220, 261–269 (2003)

    Article  Google Scholar 

  9. Dodd, I.B., Perkins, A.J., Tsemitsidis, D., Egan, J.B.: Octamerization of CI repressor is needed for effective repression of P RM and efficient switching from lysogeny. Gen. Dev. 15, 3013–3022 (2001)

    Article  Google Scholar 

  10. Dodd, I.B., Shearwin, K.E., Egan, J.B.: Revisited gene regulation in bacteriophage λ. COGD 15(2), 145–152 (2005)

    Article  Google Scholar 

  11. Dodd, I.B., Shearwin, K.E., Perkins, A.J., Burr, T., Hochschild, A., Egan, J.B.: Cooperativity in long-range gene regulation by the lambda CI repressor. Genes Dev. 18(3), 344–354 (2004)

    Article  Google Scholar 

  12. Elf, J., Ehrenberg, M.: What makes ribosome-mediated trascriptional attenuation sensitive to amino acid limitation? PLoS Computational Biology 1(1), 14–23 (2005)

    Article  Google Scholar 

  13. Lodish, H., et al.: Molecular Cell Biology. Freeman, New York (2003)

    Google Scholar 

  14. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  15. Hasty, J., McMillen, D., Isaacs, F., Collins, J.J.: Computational studies of gene regulatory networks: In numero molecular biology. Nature Reviews Genetics 2, 268–279 (2001)

    Article  Google Scholar 

  16. Hawley, D.K., Johnson, A.D., McClure, W.R.: Functional and physical characterization of transcription initiation complexes in the bacteriophage lambda O R region. J. Biol. Chem. 260(14), 8618–8626 (1985)

    Google Scholar 

  17. Hawley, D.K., McClure, W.R.: The effect of a lambda repressor mutation on the activation of transcription initiation from the lambda P RM promoter. Cell 32, 327–333 (1983)

    Article  Google Scholar 

  18. Hillston, J.: A Compositional Approach to Performance Modelling. PhD thesis, University of Edinburgh 1995; Distinguished Dissertations Series. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  19. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Annual Review of Genomics and Human Genetics 2(343) (2001)

    Google Scholar 

  20. Johnson, A.D., Poteete, A.R., Lauer, G., Sauer, R.T., Ackers, G.K., Ptashne, M.: λ repressor and Cro– components of an efficient molecular switch. Nature 294(5838), 217–223 (1981)

    Article  Google Scholar 

  21. Kierzek, A.M., Zaim, J., Zielenkiewicz, P.: The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. Journal of Biological Chemistry 276, 8165–8172 (2001)

    Article  Google Scholar 

  22. Koblan, K.S., Ackers, G.K.: Site-specific enthalpic regulation of DNA transcription at bacteriophage λ O R . Biochemistry 31, 57–65 (1992)

    Article  Google Scholar 

  23. Kuttler, C.: Bacterial transcription in the pi calculus. In: 3rd International Workshop on Computational Methods in Systems Biology (2005)

    Google Scholar 

  24. Li, M., McClure, W.R., Susskind, M.M.: Changing the mechanism of transcriptional activation by phage λ repressor. Proceedings of the National Academy of Sciences USA 94, 3691–3696 (1997)

    Article  Google Scholar 

  25. McClure, W.R.: Mechanism and control of transcription initiation in prokaryotes. Annual Review Biochemistry 54, 171–204 (1985)

    Article  Google Scholar 

  26. Meyer, B., Ptashne, M.: Gene regulation at the right operator O R of bacteriophage lamba. I. O R3 and autegeneous negative control by repressor. J. Mol. Biol., 19–205 (1980)

    Google Scholar 

  27. Michalowski, C.B., Little, J.W.: Postitive autoregulation of cI is a dispensable feature of the phage λ gene regulatory circuitry. J. Bacteriol. 187(18), 6430–6442 (2005)

    Article  Google Scholar 

  28. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  29. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (I and II). Information and Computation 100, 1–77 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Moll, I., Hirokawa, G., Kiel, M.C., Kaji, A., Bläsi, U.: Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucl. Acids Res. 32(11), 3354–3363 (2004)

    Article  Google Scholar 

  31. Oppenheim, A.B., Kobiler, O., Stavans, J., Court, D.L., Adhya, S.: Switches in bacteriophage lambda development. Annual Reviews Genetics 39, 409–429 (2005)

    Article  Google Scholar 

  32. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. Transactions on Computational Systems Biology (to appear, 2005)

    Google Scholar 

  33. Priami, C.: Stochastic π-calculus. Computer Journal 6, 578–589 (1995)

    Article  Google Scholar 

  34. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ptashne, M.: A Genetic Switch: Phage Lambda Revisited, 3rd edn. Cold Spring Harbor Laboratory Press (2004)

    Google Scholar 

  36. Ptashne, M., Gann, A.: Genes and Signals. Cold Spring Harbor Laboratory Press (2002)

    Google Scholar 

  37. Regev, A.: Computational Systems Biology: A Calculus for Biomolecular Knowledge. Tel Aviv University, PhD thesis (2002)

    Google Scholar 

  38. Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)

    Article  Google Scholar 

  39. Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems. In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology. Springer, Heidelberg (2004)

    Google Scholar 

  40. Révet, B., von Wilcken-Bergmann, B., Bessert, H., Barker, A., Müller-Hill, B.: Four dimers of lambda repressor bound to two suitably spaced pairs of lambda operators form octamers and DNA loops over large distances. Current Biology 9(3), 151–154 (1999)

    Article  Google Scholar 

  41. Shea, M., Ackers, G.K.: The O R control system of bacteriophage lambda: A physical-chemical model for gene regulation. Molecular Biology 181, 211–230 (1985)

    Article  Google Scholar 

  42. Shean, C.S., Gottesman, M.E.: Translation of the prophage λ cI transcript. Cell 70(3), 513–522 (1992)

    Article  Google Scholar 

  43. Slutsky, M., Mirny, L.A.: Kinetics of protein-DNA interaction: Facilitated target location in sequence-dependent potential. Biophys. J. 87(6), 4021–4035 (2004)

    Article  Google Scholar 

  44. Sneppen, K., Zocchi, G.: Physics in Molecular Biology. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  45. Svenningsen, S.L., Costantino, N., Court, D.L., Adhya, S.: On the role of Cro in λ prophage induction. Proceedings of the National Academy of Sciences USA 102(12), 4465–4469 (2005)

    Article  Google Scholar 

  46. Vilar, J.M.G., Saiz, L.: DNA looping in gene regulation: from the assembly of macromolecular complexes to the control of transcriptional noise. Current Opinion in Genetics & Development 15, 1–9 (2005)

    Article  Google Scholar 

  47. Wagner, R.: Transcription Regulation in Prokaryotes. Oxford University Press, Oxford (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuttler, C., Niehren, J. (2006). Gene Regulation in the Pi Calculus: Simulating Cooperativity at the Lambda Switch. In: Priami, C., IngĂłlfsdĂłttir, A., Mishra, B., Riis Nielson, H. (eds) Transactions on Computational Systems Biology VII. Lecture Notes in Computer Science(), vol 4230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11905455_2

Download citation

  • DOI: https://doi.org/10.1007/11905455_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48837-8

  • Online ISBN: 978-3-540-48839-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics