Advertisement

An Accelerated Micro Genetic Algorithm for Numerical Optimization

  • Linsong Sun
  • Weihua Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4247)

Abstract

In this paper, we present an accelerated micro genetic algorithm for numerical optimization. It is implemented by incorporating the conventional micro genetic algorithm with a local optimizer based on heuristic pattern move and Aitken Δ2 acceleration method. Performance tests with three benchmarking functions indicate that the presented algorithm has excellent convergence performance for multimodal optimization problems. The number of objective function evaluations required to obtain global optima is only 5.4-11.9% of that required by using conventional micro genetic algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holland, J.H.: Outline for a Logical Theory of Adaptive Systems. J. Assoc. Comput. Mach. 9, 297–314 (1962)zbMATHGoogle Scholar
  2. 2.
    Gudla, Kumar, P., Ganguli, Ranjan: An automated Hybrid Genetic-Conjugate Gradient Algorithm for Multimodal Optimization Problems. Applied Mathematics and Computation 167, 1457–1474 (2005)Google Scholar
  3. 3.
    Krishnakumar, K.: Micro-Genetic Algorithms for Stationary and Non-Stationary Function Optimization. SPIE Intelligent Control and Adaptive Systems 1196, 289–296 (1989)Google Scholar
  4. 4.
    Xu, Y.G., Liu, G.R., Wu, Z.P.: A Novel Hybrid Genetic Algorithm Using Local Optimizer Based on Heuristic Pattern Move. Appl. Artif. Intell. Int. J. 15, 601–631 (2001)CrossRefGoogle Scholar
  5. 5.
    Fawaz, Z., Xu, Y.G., Behdinan, K.: Hybrid Evolutionary Algorithm and Application to Structural Optimization. Struct. Multidisc. Optim. 30, 219–226 (2005)CrossRefGoogle Scholar
  6. 6.
    Mathews, J.H.: Numerical Methods for Mathematics, Science, and Engineering, 2nd edn. Prentice-Hall, Englewood Cliffs (1992)zbMATHGoogle Scholar
  7. 7.
    Törn, A., Žilinskas, A. (eds.): Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  8. 8.
    Mühlenbein, H., Schomisch, D., Born, J.: The Parallel Genetic Algorithm as Function Optimizer. Parallel Computing 17, 619–632 (1991)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Linsong Sun
    • 1
  • Weihua Zhang
    • 1
  1. 1.College of Hydraulic Science & EngineeringYangzhou UniversityYangzhouPR China

Personalised recommendations