Advertisement

ANDYMARK: An Analytical Method to Establish Dynamically the Length of the Markov Chain in Simulated Annealing for the Satisfiability Problem

  • Juan Frausto-Solís
  • Héctor Sanvicente-Sánchez
  • Froilán Imperial-Valenzuela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4247)

Abstract

Because the efficiency and efficacy in Simulated Annealing (SA) algorithms is determined by their cooling scheme, several methods to set it have been proposed. In this paper an analytical method (ANDYMARK) to tune the parameters of the cooling scheme in SA for the Satisfiability (SAT) problem is presented. This method is based on a relation between the Markov chain’s length and the cooling scheme. We compared ANDYMARK versus a classical SA algorithm that uses the same constant Markov chain. Experimentation with SAT instances shows that SA using this method obtains similar quality solutions with less effort than the classical one.

Keywords

Satisfiability Simulated Annealing Combinatorial Optimization NP-Hard Problems Optimization Heuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Cerny, V.: Thermodynamical Approach to the Traveling Salesman Problem: an Efficient Simulation Algorithm. Journal of Optimization Theory and Applications 45, 41–51 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of State Calculations by Fast Computing Machines. Chem. Phys. 21, 1087–1092 (1953)Google Scholar
  4. 4.
    Sanvicente-Sánchez, H., Frausto-Solís, J.: A Method to Establish the Cooling Scheme in Simulated Annealing Like Algorithms. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp. 755–763. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing, p. 272. John Wiley & Sons, Inc., New York (1989)zbMATHGoogle Scholar
  6. 6.
    Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. In: SAT 2000, pp. 283–292. IOS Press, Amsterdam (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Juan Frausto-Solís
    • 1
  • Héctor Sanvicente-Sánchez
    • 2
  • Froilán Imperial-Valenzuela
    • 3
  1. 1.ITESMTemixco MorelosMéxico
  2. 2.IMTAJiutepec MorelosMéxico
  3. 3.UVMQuerétaroMéxico

Personalised recommendations