Advertisement

A Hybrid Discrete Particle Swarm Optimization for the Traveling Salesman Problem

  • Xiangyong Li
  • Peng Tian
  • Jing Hua
  • Ning Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4247)

Abstract

This paper presents a hybrid discrete particle swarm optimization (HDPSO) for solving the traveling salesman problem (TSP). The HDPSO combines a new discrete particle swarm optimization (DPSO) with a local search. DPSO is an approach designed for the TSP based on the binary version of particle swarm optimization. Unlike in general versions of particle swarm optimization, DPSO redefines the particle’s position and velocity, and then updates its state by using a tour construction. The embedded local search is implemented to improve the solutions generated by DPSO. The experimental results on some instances are reported and indicate HDPSO can be used to solve TSPs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Liao, C.J., Tseng, C.T., Luarn, P.: A discrete version of particle swarm optimzation for flowshop scheduling problems. Computers and Operations Research (in press)Google Scholar
  3. 3.
    Clerc, M.: Discrete particle swarm optimization, illustrated by the traveling salesman problem (2000), available at http://www.mauriceclerc.net
  4. 4.
    Li, X., Tian, P., Kong, M.: A modified particle swarm optimization for multiple traveling salesmen problem. In: Proceedings of 2005 International Conference on Management Science & Engineering, pp. 475–480. Harbin Institute Technology Publisher, Incheon, South Korea (2005)Google Scholar
  5. 5.
    Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: Proceedings of 1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, vol. 5, pp. 4104–4108 (1997)Google Scholar
  6. 6.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Morgan Kaufmann Publisher, San Francisco (2001)Google Scholar
  7. 7.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of 1998 IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)Google Scholar
  8. 8.
    Johnson, D.S., McGeoch, L.A.: The travelling salesman problem: A case study in local optimization. In: Aarts, E., Lenstra, J. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. John Wiley & Sons, Chichester, UK (1997)Google Scholar
  9. 9.
    Stützle, T., Hoos, H.H.: MAX-MIN ant system. Future Generation of Computer Systems 16, 889–914 (2000)CrossRefGoogle Scholar
  10. 10.
    Gambardella, L., Dorigo, M.: Solving symmetric and asymmetric TSPs by ant colonies. In: Proceedings of IEEE International Conference on Evolutionary Computation (ICEC 1996), pp. 622–627. IEEE Press, Piscataway, USA (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xiangyong Li
    • 1
  • Peng Tian
    • 1
  • Jing Hua
    • 1
  • Ning Zhong
    • 1
  1. 1.College of Economics & ManagementShanghai Jiaotong UniversityShanghaiP.R. China

Personalised recommendations