A New Ant Colony Optimization Applied for the Multidimensional Knapsack Problem

  • Min Kong
  • Peng Tian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4247)


This paper proposes a Binary Ant System (BAS), a new Ant Colony Optimization applied to multidimensional knapsack problem (MKP). In BAS, artificial ants construct the solutions by selecting either 0 or 1 at every bit stochastically biased by the pheromone level. For ease of implementation, the pheromone is designed specially to directly represent the probability of selection. Experimental results show the advantage of BAS over other ACO based algorithms. The ability of BAS in finding the optimal solutions of various benchmarks indicates its potential in dealing with large size MKP instances.


Ant Colony Optimization Binary Ant System Combinatorial Optimization Multidimensional Knapsack Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alaya, I., Solnon, C., Ghéira, K.: Ant algorithm for the multi-dimensional knapsack problem. In: International Conference on Bioinspired Optimization Methods and their Applications (BIOMA 2004), October 2004, pp. 63–72 (2004)Google Scholar
  2. 2.
    Blum, C., Dorigo, M.: The Hyper-Cube Framework for Ant Colony Optimization. IEEE Transactions on Man, Systems and Cybernetics — Part B 34(2), 1161–1172 (2004)CrossRefGoogle Scholar
  3. 3.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York, Oxford (1999)zbMATHGoogle Scholar
  4. 4.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimentional knapsack problem. Journal of heuristic 4, 63–86 (1998)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)CrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant Algorithms for Discrete Optimization. Artificial Life 5(3), 137–172 (1999)CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Fidanova, S.: Evolutionary Algorithm for Multidimensional Knapsack Problem. In: PPSNVII-Workshop (2002)Google Scholar
  9. 9.
    Gambardella, L.M., Taillard, E.D., Agazzi, G.: MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 63–76. McGraw-Hill, London (1999)Google Scholar
  10. 10.
    Gambardella, L., Taillard, E., Dorigo, M.: Ant colonies for the quadratic assignment problem. J. Oper. Res. Soc. 50(2), 167–176 (1999)zbMATHCrossRefGoogle Scholar
  11. 11.
    Leguizamon, G., Michalewicz, Z.: A new version of Ant System for Subset Problem, Congress on Evolutionary Computation, pp. 1459–1464 (1999)Google Scholar
  12. 12.
    Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment problem. IEEE Trans. Data Knowl. Eng. 11, 769–778 (1999)CrossRefGoogle Scholar
  13. 13.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, Chichester (1990)zbMATHGoogle Scholar
  14. 14.
    Pirkul, H.: A Heuristic Solution Procedure for the Multiconstraint Zero-One Knapsack Problem. Naval Research Logistics 34, 161–172 (1987)zbMATHCrossRefGoogle Scholar
  15. 15.
    Stützle, T., Hoos, H.: MAX-MIN Ant System. Future Generation Computer Systems Journal 16(8), 889–914 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Min Kong
    • 1
  • Peng Tian
    • 1
  1. 1.Shanghai Jiaotong UniversityShanghaiChina

Personalised recommendations