Advertisement

Towards a Fully Generic Theory of Data

  • Douglas A. Creager
  • Andrew C. Simpson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4260)

Abstract

Modern software systems place a large emphasis on heterogeneous communication. For disparate applications to communicate effectively, a generic theory of data is required that works at the inter-application level. The key feature of such a theory is full generality, where the data model of an application is not restricted to any particular modeling formalism. Existing solutions do not have this property: while any data can be encoded in terms of XML or using the Semantic Web, such representations provide only basic generality, whereby to reason about an arbitrary application’s data model it must be re-expressed using the formalism in question. In this paper we present a theory of data which is fully generic and utilizes an extensible design to allow the underlying formalisms to be incorporated into a specification only when necessary. We then show how this theory can be used to investigate two common data equivalence problems — canonicalization and transformation — independently of the datatypes involved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckett, D. (ed.): RDF/XML Syntax Specification. W3C (February 2004), http://www.w3.org/TR/rdf-syntax-grammar/
  2. 2.
    Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifier (URI): Generic syntax. IETF Requests for Comments 3986 (January 2005), http://www.ietf.org/rfc/rfc3986.txt
  3. 3.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 29–37 (May 2001)Google Scholar
  4. 4.
    Boyer, J.: Canonical XML. W3C (March 2001), http://www.w3.org/TR/xml-c14n/
  5. 5.
    Boyer, J., Eastlake, D.E., Reagle, J.: Exclusive XML Canonicalization. W3C (July 2002), http://www.w3.org/TR/xml-exc-c14n/
  6. 6.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F. (eds.): Extensible Markup Language. W3C (February 2004), http://www.w3.org/TR/REC-xml/
  7. 7.
    Clark, J. (ed.): XSL Transformations (XSLT). W3C (November 1999), http://www.w3.org/TR/xslt/
  8. 8.
    Codd, E.F.: A relational model of data for large shared data bases. Communications of the ACM 13(6), 377–387 (1970)zbMATHCrossRefGoogle Scholar
  9. 9.
    Eastlake, D., Reagle, J., Solo, D. (eds.): XML-Signature Syntax and Processing. W3C (February 2002), http://www.w3.org/TR/xml-dsigcore/
  10. 10.
    Jacobs, B., Rutten, J.: A tutorial on (co) algebras and (co) induction. EATCS Bulletin 62(222), 222–259 (1997)zbMATHGoogle Scholar
  11. 11.
    Klyne, G., Carroll, J.J. (eds.): Resource Description Framework (RDF): Concepts and Abstract Syntax. W3C (February 2004), http://www.w3.org/TR/rdf-concepts/
  12. 12.
    Le Hors, A., Le Hégaret, P., Wood, L., Nicol, G., Robie, J., Champion, M., Byrne, S.: Document Object Model (DOM) Level 3 Core Specification. W3C (April 2004), http://www.w3.org/TR/DOM-Level-3-Core/
  13. 13.
    McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language Overview. W3C (February 2004), http://www.w3.org/TR/owl-features/
  14. 14.
    Ouksel, A.M., Sheth, A.: Semantic interoperability in global information systems. SIGMOD Record 28(1), 5–12 (1999)CrossRefGoogle Scholar
  15. 15.
    Raggett, D., Le Hors, A., Jacobs, I.: HTML 4.01 Specification. W3C (December 1999), http://www.w3.org/TR/html
  16. 16.
    Shannon, C., Weaver, W.: The Mathematical Theory of Communication. University of Illinois (1963)Google Scholar
  17. 17.
    Sheth, A.: Changing focus on interoperability in information systems: From system, syntax, structure to semantics. In: Goodchild, M.F., Egenhofer, M.J., Fegeas, R., Kottman, C.A. (eds.) Interoperating Geographic Information Systems. Kluwer Publishers, Dordrecht (1998)Google Scholar
  18. 18.
    Smith, M.K., Welty, C., McGuinness, D.L. (eds.): OWL Web Ontology Language Guide. W3C (February 2004), http://www.w3.org/TR/owl-guide/
  19. 19.
    Spivey, J.M.: An introduction to Z and formal specification. Software Engineering Journal 4(1), 40–50 (1989)CrossRefGoogle Scholar
  20. 20.
    Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall International, Englewood Cliffs (1989)zbMATHGoogle Scholar
  21. 21.
    Woodcock, J.C.P., Davies, J.W.M.: Using Z: Specification, refinement, and proof. Prentice Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Douglas A. Creager
    • 1
  • Andrew C. Simpson
    • 1
  1. 1.Oxford University Computing LaboratoryOxfordUnited Kingdom

Personalised recommendations