Skip to main content

On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle

  • Conference paper
Algorithmic Learning Theory (ALT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4264))

Included in the following conference series:

  • 749 Accesses

Abstract

We study exact learning of halfspaces from equivalence queries. The algorithm uses an oracle RCH that returns a random consistent hypothesis to the counterexamples received from the equivalence query oracle. We use the RCH oracle to give a new polynomial time algorithm for exact learning halfspaces from majority of halfspaces and show that its query complexity is less (by some constant factor) than the best known algorithm that learns halfspaces from halfspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1987)

    Google Scholar 

  2. Bshouty, N.H.: Exact learning of formulas in parallel. Machine Learning 26, 25–41 (1997)

    Article  MATH  Google Scholar 

  3. Ben-David, S., Bshouty, N.H., Kushilevitz, E.: A Composition Theorem for Learning Algorithms with Applications to Geometric Concept Classes. In: STOC 1997, pp. 324–333 (1997)

    Google Scholar 

  4. Bshouty, N.H., Cleve, R., Gavaldà, R., Kannan, S., Tamon, C.: Oracles and Queries That Are Sufficient for Exact Learning. Journal of Computer and System Sciences 52(3), 421–433 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36(4), 929–965 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bshouty, N.H., Gavinsky, D.: PAC=PAExact and other equivalent models. In: FOCS 2002, pp. 167–176 (2002)

    Google Scholar 

  7. Bshouty, N.H., Jackson, J.C., Tamon, C.: Exploring learnability between exact and PAC. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS, vol. 2375, pp. 244–254. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. In: STOC 2002, pp. 109–115 (2002)

    Google Scholar 

  9. Dunagan, J., Vempala, S.: A simple polynomial-time rescaling algorithm for solving linear programs. In: STOC 2004, pp. 315–320 (2004)

    Google Scholar 

  10. Grunbaum, B.: Partitions of mass-distributions and convex bodies by hyperplanes. Pacific J. Math 10, 1257–1261 (1960)

    MathSciNet  Google Scholar 

  11. Hastad, J.: On the Size of Weights for Threshold Gates. SIAM Journal on Discrete Mathematics 3(7), 484–492 (1994)

    Article  MathSciNet  Google Scholar 

  12. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Littlestone, N.: Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning 2, 285–318 (1988)

    Google Scholar 

  14. Lovász, L.: Hit-and-run mixes fast. Mathematical Programming 86, 443–461 (1998)

    Google Scholar 

  15. Maass, W.: Perspectives of current research about the complexity of learning on neural nets. In: Roychowdhury, V.P., Siu, K.Y., Orlitsky, A. (eds.) Theoretical Advances in Neural Computation and Learning, pp. 295–336. Kluwer Academic Publishers, Boston (1994)

    Google Scholar 

  16. McCulloch, W.S., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bulletin of mathematical biophysics 5, 115–133 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maass, W., Turan, G.: How fast can a threshold gate learn. In: Hanson, S.J., Drastal, G.A., Rivest, R.L. (eds.) Computational Learning Theory and Natural Learning System: Constraints and Prospects, pp. 381–414. MIT Press, Cambridge (1994)

    Google Scholar 

  18. Parberry, I.: Circuit complexity and neural networks. The MIT press, Cambridge (1994)

    MATH  Google Scholar 

  19. Rosenblatt, F.: Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Spartan Books, New York (1962)

    MATH  Google Scholar 

  20. Servedio, R.: Perceptron, Winnow, and PAC Learning. SIAM Journal on Computing 31(5), 1358–1369 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vaidya, P.M.: New algorithm for minimizing convex functions over convex sets. Mathematical Programming, 291–341 (1996)

    Google Scholar 

  22. Valiant, L.: A theory of the learnable. Communications of the ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  23. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16(2), 264–280 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  24. Weisstein, E.W.: Gamma Function. From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/GammaFunction.html

  25. Wenocur, R.S., Dudley, R.M.: Some special Vapnik-Chervonenkis classes. Discrete Math. 33, 313–318 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bshouty, N.H., Wattad, E. (2006). On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds) Algorithmic Learning Theory. ALT 2006. Lecture Notes in Computer Science(), vol 4264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894841_8

Download citation

  • DOI: https://doi.org/10.1007/11894841_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46649-9

  • Online ISBN: 978-3-540-46650-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics