Skip to main content

Improving VG-RAM Neural Networks Performance Using Knowledge Correlation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Abstract

In this work, the correlation between input-output patterns stored in the memory of the neurons of Virtual Generalizing RAM (VG-RAM) weightless neural networks, or knowledge correlation, is used to improve the performance of these neural networks. The knowledge correlation, detected using genetic algorithms, is used for changing the distance function employed by VG-RAM neurons in their recall mechanism. In order to evaluate the performance of the method, experiments with several well-known datasets were made. The results showed that VG-RAM networks employing knowledge correlation perform significantly better than standard VG-RAM networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksander, I.: Self-adaptive Universal Logic Circuits (Design Principles and Block Diagrams of Self-adaptive Universal Logic Circuit with Trainable Elements). IEE Electronic Letters 2, 231–232 (1966)

    Google Scholar 

  2. Ludermir, T.B., Carvalho, A., Braga, A.P., Souto, M.C.P.: Weightless Neural Models: A Review of Current and Past Works. Neural Computing Surveys 2, 41–61 (1999)

    Google Scholar 

  3. Aleksander, I.: From WISARD to MAGNUS: a family of weightless virtual neural machines. In: Austin, J. (ed.) RAM-Based Neural Networks, pp. 18–30. World Scientific, Singapore (1998)

    Google Scholar 

  4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  5. Komati, K.S., De Souza, A.F.: Using Weightless Neural Networks for Vergence Control in an Artificial Vision System. Applied Bionics and Biomechanics 1, 21–32 (2003)

    Article  Google Scholar 

  6. Aleksander, I., Browne, C., Dunmall, B., Wright, T.: Towards Visual Awareness in a Neural System. In: Amari, S., Kasabov, N. (eds.) Brain-Like Computing and Intelligent Information Systems, pp. 513–533. Springer, Heidelberg (1997)

    Google Scholar 

  7. Corcoran, A.L., Wainwright, R.L.: LibGA: A User-friendly Workbench for Order-based Genetic Algorithm Research. In: Proceedings of the ACM/SIGAPP Symposium on Applied Computing: States of the Art and Practice, pp. 111–117 (1993)

    Google Scholar 

  8. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. University of California, Department of Information and Computer Science, Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  9. Thrun, S.B., et al.: The MONK’s Problems: A Performance Comparison of Different Learning Algorithms. Technical Report CS-CMU-91-197, Carnegie Mellon University (1991)

    Google Scholar 

  10. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  11. Fahlman, S.E., Lebiere, C.: The Cascade-correlation Learning Architecture. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, vol. 2, pp. 524–532. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  12. Vafaie, H., De Jong, K.A.: Improving the Performance of a Rule Induction System Using Genetic Algorithms. In: Proceedings of the First International Workshop on Multistrategy Learning, pp. 305–315. Harpers Ferry, W. Virginia (1991)

    Google Scholar 

  13. Wnek, J., Michalski, R.S.: Hypothesis-driven Constructive Induction in AQ17: A Method and Experiments. Machine Learning 14(2), 139–168 (1994)

    Article  MATH  Google Scholar 

  14. Wolberg, W.H., Mangasarian, O.L.: Multisurface Method of Pattern Separation for Medical Diagnosis Applied to Breast Cytology. Proceedings of the National Academy of Sciences, U.S.A. 87, 9193–9196 (1990)

    Article  MATH  Google Scholar 

  15. Rohwer, R., Morciniec, M.: A Theoretical and Experimental Account of N-tuple Classifier Performance. Neural Computing 8, 629–642 (1995)

    Article  Google Scholar 

  16. Salamó, M., Golobardes, E., Vernet, D., Nieto, M.: Weighting Methods for a Case-based Classifier System. In: Proceedings of Learning 2000, Madrid, Spain (2000)

    Google Scholar 

  17. Webb, G.I.: Further Experimental Evidence Against the Utility of Occam’s Razor. Journal of Artificial Intelligence Research 4, 397–417 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carneiro, R.V., Dias, S.S., Fardin, D., Oliveira, H., Garcez, A.S.d., De Souza, A.F. (2006). Improving VG-RAM Neural Networks Performance Using Knowledge Correlation. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_48

Download citation

  • DOI: https://doi.org/10.1007/11893028_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics