Skip to main content

BCM-Type Synaptic Plasticity Model Using a Linear Summation of Calcium Elevations as a Sliding Threshold

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4232))

Included in the following conference series:

Abstract

It has been considered that an amount of calcium elevation in a synaptic spine determines whether the synapse is potentiated or depressed. However, it has been pointed out that simple application of the principle can not reproduce properties of spike-timing-dependent plasticity (STDP). To solve the problem, we present a possible mechanism using dynamically sliding threshold as the linear summation of calcium elevations induced by single pre-synaptic and post-synaptic spikes. We demonstrate that the model can reproduce the timing dependence of biological STDP. In addition, we find that the model can reproduce the dependence of biological STDP on the initial synaptic strength, which is found to be asymmetric for synaptic potentiation and depression, whereas no explicit initial-strength dependence nor asymmetric mechanism are incorporated into the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Markram, H., Lubke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997)

    Article  Google Scholar 

  2. Bi, G.Q., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neuroscience 18, 10464–10472 (1998)

    Google Scholar 

  3. Zhang, L., Tao, H., Holt, C., Harris, W., Poo, M.: A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998)

    Article  Google Scholar 

  4. Froemke, R.C., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416, 433–438 (2002)

    Article  Google Scholar 

  5. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  6. Song, S., Abbott, L.F.: Cortical development and remapping through spike timing-dependent plasticity. Neuron 32, 339–350 (2001)

    Article  Google Scholar 

  7. Kitano, K., Fukai, T.: Temporal characteristics of the predictive synchronous firing modeled by spike-timing-dependent plasticity. Learning and Memory 11, 267–276 (2004)

    Article  Google Scholar 

  8. Rao, R.P., Sejnowski, T.J.: Spike-timing-dependent hebbian plasticity as temporal difference learning. Neural Computation 13, 2221–2237 (2001)

    Article  MATH  Google Scholar 

  9. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  10. Artola, A., Singer, W.: Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neuroscience 16, 480–487 (1993)

    Article  Google Scholar 

  11. Bienenstock, E., Cooper, L., Munro, P.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neuroscience 2, 32–48 (1982)

    Google Scholar 

  12. Bi, G.Q.: Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biol. Cybern. 87, 319–332 (2002)

    Article  MATH  Google Scholar 

  13. Sjostrom, P., Nelson, S.: Spike timing, calcium signals and synaptic plasticity. Curr. Opin. Neurobiol. 12, 305–314 (2002)

    Article  Google Scholar 

  14. Kitajima, T., Hara, K.: A generalized hebbian rule for activity-dependent synaptic modifications. Neural Networks 13, 445–454 (2000)

    Article  Google Scholar 

  15. Shouval, H., Bear, M., Cooper, L.: A unified model of nmda receptor-dependent bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. USA. 99, 10831–10836 (2002)

    Article  Google Scholar 

  16. Feldman, D.E.: Timing-based ltp and ltd at vertical inputs to layer ii/iii pyramidal cells in rat barrel cortex. Neuron 27, 45–56 (2000)

    Article  Google Scholar 

  17. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M.-m., Kato, K.: Calcium release from internal stores regulates polarity and input specificity of synaptic modification. Nature 408, 584–588 (2000)

    Article  Google Scholar 

  18. Tsukada, M., Aihara, T., Kobayashi, Y., Shimazaki, H.: Spatial analysis of spike-timing-dependent ltp and ltd in the ca1 area of hippocampal slices using optical imaging. Hippocampus 15, 104–109 (2005)

    Article  Google Scholar 

  19. Schiller, J., Schiller, Y., Clapham, D.: NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat. Neurosci. 1, 114–118 (1998)

    Article  Google Scholar 

  20. Koester, H., Sakmann, B.: Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proc. Natl. Acad. Sci. USA 95, 9596–9601 (1998)

    Article  Google Scholar 

  21. Abraham, W., Tate, W.: Metaplasticity: a new vista across the field of synaptic plasticity. Progress in neurobiology 52, 303–323 (1997)

    Article  Google Scholar 

  22. Solger, J., Wozny, C., Manahan-Vaughan, D., Behr, J.: Distinct mechanisms of bidirectional activity-dependent synaptic plasticity in superficial and deep layers of rat entorhinal cortex. Eur. J. Neurosci. 19, 2003–2007 (2004)

    Article  Google Scholar 

  23. Toyoizumi, T., Pfister, J., Aihara, K., Gerstner, W.: Generalized bienenstockcooper- munro rule for spiking neurons that maximizes information transmission. Proc. Natl. Acad. Sci. USA 102, 5239–5244 (2005)

    Article  Google Scholar 

  24. Noguchi, J., Matsuzaki, M., Ellis-Davies, G., Kasai, H.: Spine-neck geometry determines nmda receptor-dependent ca2+ signaling in dendrites. Neuron 46, 609–622 (2005)

    Article  Google Scholar 

  25. Gasparini, S., Migliore, M., Magee, J.: On the initiation and propagation of dendritic spikes in ca1 pyramidal neurons. J. Neurosci. 24, 11046–11056 (2004)

    Article  Google Scholar 

  26. van Rossum, M.C.W., Bi, G.Q., Turrigiano, G.G.: Stable hebbian learning from spike timing-dependent plasticity. J. Neuroscience 20, 8812–8821 (2000)

    Google Scholar 

  27. Rubin, J., Lee, D.D., Sompolinsky, H.: Equilibrium properties of temporally asymmetric Hebbian plasticity. Physical Review Letters 86, 364–367 (2001)

    Article  Google Scholar 

  28. Gütig, R., Aharonov, R., Rotter, S., Sompolinsky, H.: Learning input correlations through nonlinear temporally asymmetric hebbian plasticity. J. Neuroscience 23, 3697–3714 (2003)

    Google Scholar 

  29. Sakai, Y., Nakano, K., Yoshizawa, S.: Synaptic regulation on various stdp rules. Neurocomputing 58-60, 351–357 (2004)

    Article  MathSciNet  Google Scholar 

  30. Shouval, H., Kalantzis, G.: Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. J. Neurophysiol. 93, 1069–1073 (2005)

    Article  Google Scholar 

  31. Rubin, J., Gerkin, R., Bi, G.Q., Chow, C.: Calcium time course as a signal for spike-timing-dependent plasticity. J. Neurophysiol. 93, 2600–2613 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurashige, H., Sakai, Y. (2006). BCM-Type Synaptic Plasticity Model Using a Linear Summation of Calcium Elevations as a Sliding Threshold. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893028_3

Download citation

  • DOI: https://doi.org/10.1007/11893028_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46479-2

  • Online ISBN: 978-3-540-46480-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics